全文获取类型
收费全文 | 801篇 |
免费 | 36篇 |
专业分类
837篇 |
出版年
2023年 | 5篇 |
2022年 | 8篇 |
2021年 | 20篇 |
2020年 | 8篇 |
2019年 | 21篇 |
2018年 | 17篇 |
2017年 | 17篇 |
2016年 | 27篇 |
2015年 | 36篇 |
2014年 | 53篇 |
2013年 | 59篇 |
2012年 | 75篇 |
2011年 | 60篇 |
2010年 | 39篇 |
2009年 | 30篇 |
2008年 | 44篇 |
2007年 | 35篇 |
2006年 | 48篇 |
2005年 | 32篇 |
2004年 | 40篇 |
2003年 | 33篇 |
2002年 | 40篇 |
2001年 | 3篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 8篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 6篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1985年 | 6篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 3篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1971年 | 3篇 |
1969年 | 2篇 |
排序方式: 共有837条查询结果,搜索用时 15 毫秒
101.
Ilona J. Pinter Arthur J. van Soest Maarten F. Bobbert Jeroen B. J. Smeets 《Biological cybernetics》2012,106(8-9):441-451
Within the field of motor control, there is no consensus on which kinematic and kinetic aspects of movements are planned or controlled. Perturbing goal-directed movements is a frequently used tool to answer this question. To be able to draw conclusions about motor control from kinematic responses to perturbations, a model of the periphery (i.e., the skeleton, muscle–tendon complexes, and spinal reflex circuitry) is required. The purpose of the present study was to determine to what extent such conclusions depend on the level of simplification with which the dynamical properties of the periphery are modeled. For this purpose, we simulated fast goal-directed single-joint movement with four existing types of models. We tested how three types of perturbations affected movement trajectory if motor commands remained unchanged. We found that the four types of models of the periphery showed different robustness to the perturbations, leading to different predictions on how accurate motor commands need to be, i.e., how accurate the knowledge of external conditions needs to be. This means that when interpreting kinematic responses obtained in perturbation experiments the level of error correction attributed to adaptation of motor commands depends on the type of model used to describe the periphery. 相似文献
102.
103.
Ilona Cuijpers Anna-Pia Papageorgiou Paolo Carai Melissa Herwig Andreas Mügge Thomas Klein Nazha Hamdani Elizabeth A. V. Jones Stephane Heymans 《Journal of cellular and molecular medicine》2021,25(2):729-741
The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (Fpassive). The reduced Fpassive was the result of titin isoform switching from the stiff N2B to the more flexible N2BA and increased phosphorylation of total titin and specifically its N2Bus region (S4080 and S3391). Importantly, DPP-4 directly cleaved titin in vitro, resulting in an increased Fpassive, which was prevented by simultaneous administration of linagliptin. In conclusion, linagliptin improves left ventricular stiffness in obese ZSF1 rats by preventing direct DPP4-mediated titin cleavage, as well as by modulating both titin isoform levels and phosphorylation. Reducing left ventricular stiffness by administering linagliptin might prevent MetS-induced early diastolic dysfunction in human. 相似文献
104.
Angara Zambrano PhD Evelyn Jara Paola Murgas Clara Jara Maite A. Castro Constanza Angulo Ilona I. Concha 《Journal of cellular biochemistry》2010,110(6):1471-1480
Interleukin‐3 (IL‐3) and granulocyte/macrophage colony‐stimulating factor (GM‐CSF) are two of the best‐characterized cell survival factors in hematopoietic cells; these factors induce an increase in Akt activity in multiple cell lines, a process thought to be involved in cellular survival. It is known that growth factors require sustained glucose metabolism to promote cell survival. It has been determined that IL‐3 and GM‐CSF signal for increased glucose uptake in hematopoietic cells. Interestingly, receptors for IL‐3 and GM‐CSF are present in several non‐hematopoietic cell types but their roles in these cells have been poorly described. In this study, we demonstrated the expression of IL‐3 and GM‐CSF receptors in HEK293 cells and analyzed their effect on glucose uptake. In these cells, both IL‐3 and GM‐CSF, increased glucose uptake. The results indicated that this increase involves the subcellular redistribution of GLUT1, affecting glucose transporter levels at the cell surface in HEK293 cells. Also the data directly demonstrates that the PI 3‐kinase/Akt pathway is an important mediator of this process. Altogether these results show a role for non‐insulin growth factors in the regulation of GLUT1 trafficking that has not yet been directly determined in non‐hematopoietic cells. J. Cell. Biochem. 110: 1471–1480, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
105.
Incilay Sinici Sayuri Yonekawa Ilona Tkachyova Steven J. Gray R. Jude Samulski Warren Wakarchuk Brian L. Mark Don J. Mahuran 《PloS one》2013,8(3)
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. 相似文献
106.
107.
108.
109.
110.
Ciencewicki J Brighton L Wu WD Madden M Jaspers I 《American journal of physiology. Lung cellular and molecular physiology》2006,290(6):L1154-L1163
Prior exposure of respiratory epithelial cells to an aqueous-trapped solution of diesel exhaust (DE(as)) enhances the susceptibility to influenza infections. Here, we examined the effect of DE(as) on the Toll-like receptor 3 (TLR3) pathway, which is responsible for the recognition of and response to viruses and double-stranded RNA. Flow cytometric and confocal microscopy analyses showed that TLR3 is predominantly expressed in the cytoplasm of respiratory epithelial cells. To examine the effect of DE on TLR3 expression and function, differentiated human bronchial or nasal epithelial cells as well as A549 cells were exposed to DE(as) and then infected with influenza A or treated with polyriboinosinic acid-polyribocytidylic acid [poly(I:C)], a synthetic form of double-stranded RNA. Exposure to DE(as) before infection with influenza or stimulation with poly(I:C) significantly upregulated the expression of TLR3. Additionally, preexposure to DE(as) significantly increased the poly(I:C)-induced expression of IL-6. Overexpression of a dominant-negative mutant form of TNF receptor-associated factor 6 reversed the effects of DE(as) on poly(I:C)-induced IL-6 expression, suggesting that the response was TLR3 dependent. Similarly, preexposure to DE(as) significantly increased nuclear levels of interferon regulatory factor 3 and the expression of IFN-beta in response to poly(I:C). Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, was able to abate the effect of DE(as) on poly(I:C)-induced IFN-beta expression. Together, these results indicate that exposure of respiratory epithelial cells to DE(as) could potentially alter the response to viral infections by increasing the expression and function of TLR3. 相似文献