首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121437篇
  免费   8478篇
  国内免费   21篇
  129936篇
  2023年   631篇
  2022年   644篇
  2021年   1396篇
  2020年   1186篇
  2019年   1251篇
  2018年   3250篇
  2017年   2846篇
  2016年   3720篇
  2015年   5390篇
  2014年   5562篇
  2013年   7385篇
  2012年   8952篇
  2011年   8437篇
  2010年   5389篇
  2009年   4184篇
  2008年   6895篇
  2007年   6759篇
  2006年   6211篇
  2005年   5814篇
  2004年   5479篇
  2003年   5038篇
  2002年   4631篇
  2001年   2474篇
  2000年   2366篇
  1999年   2085篇
  1998年   984篇
  1997年   750篇
  1996年   689篇
  1995年   694篇
  1994年   658篇
  1993年   534篇
  1992年   1370篇
  1991年   1286篇
  1990年   1131篇
  1989年   1057篇
  1988年   986篇
  1987年   842篇
  1986年   787篇
  1985年   868篇
  1984年   730篇
  1983年   591篇
  1982年   482篇
  1981年   470篇
  1979年   635篇
  1978年   501篇
  1977年   432篇
  1976年   423篇
  1975年   470篇
  1974年   486篇
  1973年   493篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Null RPGRIP1 alleles in patients with Leber congenital amaurosis   总被引:10,自引:0,他引:10       下载免费PDF全文
We isolated and characterized the entire coding sequence of a human gene encoding a protein that interacts with RPGR, a protein that is absent or mutant in many cases of X-linked retinitis pigmentosa. The newly identified gene, called "RPGRIP1" for RPGR-interacting protein (MIM 605446), is located within 14q11, and it encodes a protein predicted to contain 1,259 amino acids. Previously published work showed that both proteins, RPGR and RPGRIP1, are present in the ciliary structure that connects the inner and outer segments of rod and cone photoreceptors. We surveyed 57 unrelated patients who had Leber congenital amaurosis for mutations in RPGRIP1 and found recessive mutations involving both RPGRIP1 alleles in 3 (6%) patients. The mutations all create premature termination codons and are likely to be null alleles. Patients with RPGRIP1 mutations have a degeneration of both rod and cone photoreceptors, and, early in life, they experience a severe loss of central acuity, which leads to nystagmus.  相似文献   
892.
During exercise, the oxygen consumption and the production of free radicals increase and can lead to oxidative stress with a deleterious effect on cellular structures involved in physical activity. To evaluate the oxidative stress produced by exercise and the role of ascorbate as an antioxidant, venous blood samples were obtained from 44 thoroughbred racehorses, before and after a 1000+/-200-m race at maximum velocity. Fourteen of these horses were treated intravenously with 5 g of ascorbate before running. Antioxidant capacity (PAOC), endogenous and exogenous ascorbate concentration, total antioxidant reactivity (TAR), urate concentration, creatine kinase activity, protein concentration and thiobarbiturate reactive substances (TBAR) as oxidative stress indicators were measured in the plasma of some of these horses. PAOC, TAR and TBAR increased after the race, while plasma ascorbate and urate concentrations remained unchanged. Total plasma protein (TPP) concentrations increased in line with antioxidant capacity. As predicted, both the plasma ascorbate concentration and PAOC increased immediately after ascorbate administration, but was not modified after the race, such as TBAR. However, in both groups plasma creatine kinase activity increased after the race. These results would suggest that the administration of ascorbate could nullify the oxidative stress produced by exercise in thoroughbred racehorses, but could not prevent muscular damage.  相似文献   
893.
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.  相似文献   
894.
Previous studies have demonstrated that keratin K10 plays an important role in mediating cell signaling processes, since the ectopic expression of this keratin induces cell cycle arrest in proliferating cells in vitro and in vivo. However, apart from its well known function of providing epithelial cells with resilience to mechanical trauma, little is known about its possible roles in nondividing cells. To investigate what these might be, transgenic mice were generated in which the expression of K10 was driven by bovine K6beta gene control elements (bK6(beta)hK10). The transgenic mice displayed severe abnormalities in the tongue and palate but not in other K6-expressing cells such as those of the esophagus, nails, and hair follicles. The lesions in the tongue and palate included the cytolysis of epithelial suprabasal cells associated with an acute inflammatory response and lymphocyte infiltration. The alterations in the oral mucosa caused the death of transgenic pups soon after birth, probably because suckling was impaired. These anomalies, together with others found in the teeth, are reminiscent of the lesions observed in some patients with pachyonychia congenita, an inherited epithelial fragility associated with mutations in keratins K6 and K16. Although no epithelial fragility was observed in the bK6(beta)hK10 oral epithelia of the experimental mice, necrotic processes were seen. Collectively, these data show that the carefully regulated tissue- and differentiation-specific patterns displayed by the keratin genes have dramatic consequences on the biological behavior of epithelial cells and that changes in the specific composition of the keratin intermediate filament cytoskeleton can affect their physiology, in particular those of the oral mucosa.  相似文献   
895.
The aim of this work was to investigate the alkaloid patterns of Lapiedra martinezii and their relation to biogeography and phenology focused in a phylogenetic comparison. Plants from 14 populations of L. martinezii, covering almost its entire distribution area, were subjected to morphological, ecological, and phytochemical analysis. Experiments for different alkaloid‐type content are proposed as a new tool for analysis of plant distribution. Several plants were transplanted for weekly observation of their phenological changes, and alkaloids from different plant organs were extracted, listed, and compared. The alkaloid pattern of L. martinezii comprises 49 compounds of homolycorine, lycorine, tazettine, haemantamine, and narciclasine types. The populations located in the north and south margins of the distribution area displayed alkaloid patterns different from those of the central area. Changes in these patterns during their phenological cycle may be related to a better defence for plant reproduction. L. martinezii is an old relict plant, and it has maintained some of the more primitive morphological features and alkaloid profiles of the Mediterranean Amaryllidaceae. The variations in alkaloid content observed could be interpreted in a phylogenetic sense, and those found in their phenological changes, in an adaptive one.  相似文献   
896.
The mammalian centromere-associated protein B (CENP-B) shares significant sequence similarity with 3 proteins in fission yeast (Abp1, Cbh1, and Cbh2) that also bind centromeres and have essential function for chromosome segregation and centromeric heterochromatin formation. Each of these proteins displays extensive sequence similarity with pogo-like transposases, which have been previously identified in the genomes of various insects and vertebrates, in the protozoan Entamoeba and in plants. Based on this distribution, it has been proposed that the mammalian and fission yeast centromeric proteins are derived from "domesticated" pogo-like transposons. Here we took advantage of the vast amount of sequence information that has become recently available for a wide range of fungal and animal species to investigate the origin of the mammalian CENP-B and yeast CENP-B-like genes. A highly conserved ortholog of CENP-B was detected in 31 species of mammals, including opossum and platypus, but was absent from all nonmammalian species represented in the databases. Similarly, no ortholog of the fission yeast centromeric proteins was identified in any of the various fungal genomes currently available. In contrast, we discovered a plethora of novel pogo-like transposons in diverse invertebrates and vertebrates and in several filamentous fungi. Phylogenetic analysis revealed that the mammalian and fission yeast CENP-B proteins fall into 2 distinct monophyletic clades, each of which includes a different set of pogo-like transposons. These results are most parsimoniously explained by independent domestication events of pogo-like transposases into centromeric proteins in the mammalian and fission yeast lineages, a case of "convergent domestication." These findings highlight the propensity of transposases to give rise to new host proteins and the potential of transposons as sources of genetic innovation.  相似文献   
897.
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that mineralize dissolved iron into intracellular magnetic crystals. After cell death, these crystals are trapped into sediments that remove iron from the soluble pool. MTB may significantly impact the iron biogeochemical cycle, especially in the ocean where dissolved iron limits nitrogen fixation and primary productivity. A thorough assessment of their impact has been hampered by a lack of methodology to measure the amount of, and variability in, their intracellular iron content. We quantified the iron mass contained in single MTB cells of Magnetospirillum magneticum strain AMB-1 using a time-resolved inductively coupled plasma-mass spectrometry methodology. Bacterial iron content depends on the external iron concentration, and reaches a maximum value of ~10−6 ng of iron per cell. From these results, we calculated the flux of dissolved iron incorporation into environmental MTB populations and conclude that MTB may mineralize a significant fraction of dissolved iron into crystals.  相似文献   
898.
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.Classic experiments in microbial bioenergetics used light-driven reactions from halobacterial bacteriorhodopsin or the photosynthetic reaction center to provide a temporary driving force for understanding transport and chemiosmotic coupling (6, 7, 19, 35). However, light-driven reactions have not been used in metabolic engineering to alter microbial physiology and production of chemicals. The recent discovery of proteorhodopsin (PR) in ocean microorganisms and the ease with which this membrane protein can be functionally expressed by recombinant bacteria have made possible many engineering strategies previously not available (1, 16). In this paper, we describe progress toward the goal of integrating light-driven reactions with biocatalysis.In contrast to the situation for established industrial microorganisms, such as Escherichia coli, our current understanding of less-studied algal and phototrophic bacteria may limit metabolic engineering strategies which require genetic manipulation. Metabolic engineering strategies using photosynthetic bacteria have focused largely on methods to increase hydrogen production, and improvements rely mainly on engineering of nitrogenase and hydrogenase to produce H2. Algae appear to be suited to large-scale cultivation for lipid production, but so far little has been done to engineer these organisms (36). In principle, platform microbial hosts capable of producing a diverse range of products could be boosted by addition of light-driven processes from phototrophic metabolism.To demonstrate the feasibility of transferring a light-driven process into a nonphotosynthetic bacterium, we chose to study proteorhodopsin (PR) first because it is one of the simplest mechanisms for harnessing the energy from light. The proteorhodopsins are a group of transmembrane proteins that use the light-induced isomerization of retinal, the oxidative cleavage product of the carotenoid β-carotene, either to initiate signaling pathways or to catalyze the transfer of ions across cell membranes (8). PR was discovered by metagenomic analysis of marine samples (1) and is related to the well-studied bacteriorhodopsin of archaea (33) and rhodopsin (34), a eukaryotic light-sensing protein. The membrane potential generated by light-driven proton pumping by PR has been confirmed to drive ATP synthesis in a heterologous system (25). However, bacteria expressing heterologous PR were shown not to benefit from this pumping activity, as no significant increases in growth rates were observed (9). This led to the suggestion that PR may benefit the organism only under starvation conditions. In agreement with this hypothesis, Gomez-Consarnau et al. (10) have reported that the light-dependent growth rates of a marine flavobacterium that has a native PR are increased only when the organism is cultured under energy-limited conditions.Studies of both native and recombinant systems in which rhodopsins are expressed have generated light-dependent membrane potentials. In membrane vesicles isolated from a native host, the light-dependent membrane potential generated by bacteriorhodopsin provides the driving force for ATP synthesis (35) and uptake of leucine and glutamate (20, 22). More recently, studies of recombinant systems have coupled the membrane potential to other transport processes. In one example, the membrane potential-dependent export of specific toxic molecules increased when E. coli cells expressing both an archaeal rhodopsin and a specific efflux pump were exposed to light (17). In another experiment, starved E. coli cells expressing PR increased the swimming motion of their flagella when they were illuminated (44). Based upon measurements of flagellar motion as a function of light intensity and azide concentration, the proton motive force generated by PR was estimated to be −0.2 V, a value similar to the value for aerobic respiration in E. coli (42).As a nonphotosynthetic host for recombinant PR expression, we chose the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1, which is genetically tractable for engineering and is able to use a variety of terminal electron acceptors, including insoluble metal oxides (11, 30). Key to the ability of this bacterium to reduce metal oxides is a multicomponent extracellular respiratory pathway that transports electrons from menaquinol to cytochromes in the outer membrane. This pathway is composed of a cytoplasmic membrane tetraheme protein (CymA), a periplasmic decaheme protein (MtrA), an integral outer membrane protein (MtrB), and a decaheme lipoprotein (MtrC) that is associated with MtrB (14, 37, 40). The ability of S. oneidensis to reduce extracellular metal oxides has made it possible to harvest electrons from this organism by coupling it to an electrode which serves as the electron acceptor (21). The electron flow to the outer surface allows respiration rates to be measured directly by electrochemistry.In the current work, we introduced PR into an electricity-generating bacterium, S. oneidensis strain MR-1, and demonstrated that there was integration of a light-driven process into the metabolism of a previously nonphotosynthetic organism that resulted in a useful output. We show here that PR allows cells to survive for extended periods in stationary phase and that the presence of light results in an increase in electricity generation. A possible physiological model to explain these effects is discussed.  相似文献   
899.
The Cumanians were originally Asian pastoral nomads who in the 13th century migrated to Hungary. We have examined mitochondrial DNA from members of the earliest Cumanian population in Hungary from two archeologically well-documented excavations and from 74 modern Hungarians from different rural locations in Hungary. Haplogroups were defined based on HVS I sequences and examinations of haplogroup-associated polymorphic sites of the protein coding region and of HVS II. To exclude contamination, some ancient DNA samples were cloned. A database was created from previously published mtDNA HVS I sequences (representing 2,615 individuals from different Asian and European populations) and 74 modem Hungarian sequences from the present study. This database was used to determine the relationships between the ancient Cumanians, modern Hungarians, and Eurasian populations and to estimate the genetic distances between these populations. We attempted to deduce the genetic trace of the migration of Cumanians. This study is the first ancient DNA characterization of an eastern pastoral nomad population that migrated into Europe. The results indicate that, while still possessing a Central Asian steppe culture, the Cumanians received a large admixture of maternal genes from more westerly populations before arriving in Hungary. A similar dilution of genetic, but not cultural, factors may have accompanied the settlement of other Asian nomads in Europe.  相似文献   
900.
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号