全文获取类型
收费全文 | 67篇 |
免费 | 11篇 |
专业分类
78篇 |
出版年
2018年 | 2篇 |
2017年 | 3篇 |
2015年 | 5篇 |
2013年 | 2篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 6篇 |
1996年 | 3篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1977年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有78条查询结果,搜索用时 31 毫秒
11.
12.
13.
14.
A flux analysis of glucose metabolism in the filamentous fungus Rhizopus oryzae was achieved using a specific radioactivity curve-matching program, TFLUX. Glycolytic and tricarboxylic acid cycle intermediates labeled through the addition of extracellular [U-14C]glucose were isolated and purified for specific radioactivity determinations. This information, together with pool sizes and the rates of glucose utilization and end product production, provided input for flux maps of the metabolic network under two different experimental conditions. Based upon the flux analysis of this system, a mutant of R. oryzae with higher lactate and lower ethanol yields than the parent was sought for and found. 相似文献
15.
M Matsuda A Tazumi S Kagawa T Sekizuka O Murayama JE Moore BC Millar 《BMC veterinary research》2006,2(1):1-4
Background
At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences.Results
Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences.Conclusion
High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. 相似文献16.
Baart GJ Zomer B de Haan A van der Pol LA Beuvery EC Tramper J Martens DE 《Genome biology》2007,8(7):R136
Background
Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. 相似文献17.
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b ( Cyt b ), and for up to two nuclear genes, heat shock cognate 70 ( HSC70 ) and aminopeptidase N intron ( APN54 ). We found that the mean level of genetic diversity and long-term effective population sizes ( N e ) were significantly greater for two species, Littorina scutulata and L. plena , that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata , that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata , showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species. 相似文献
18.
Protein domains are generally thought to correspond to units of evolution. New research raises questions about how such domains are defined with bioinformatics tools and sheds light on how evolution has enabled partial domains to be viable.With the rapid expansion in the number of determined protein sequences - over 92 million in UniProt in March 2015 - an ever-increasing number of biologists are using bioinformatics tools for annotation of these sequences. One widely used strategy is to identify occurrences of Pfam families within the sequence of interest [1]. A Pfam family is a multiple sequence alignment of the occurrences of a particular domain both in different species and in different regions of the same protein. The concept underpinning Pfam is that proteins typically comprise one or more domains (regions), each of which is an evolutionary unit that generally has a well-defined biological function. A significant sequence similarity between a query protein and a Pfam family provides the basis for annotations. Two recent articles [2,3] in Genome Biology evaluate the implications of having the query sequence only matching part of a Pfam family, which is an intriguing finding, given that a Pfam family is considered to be an evolutionary unit. 相似文献
19.
Rainey PB Beaumont HJ Ferguson GC Gallie J Kost C Libby E Zhang XX 《Microbial cell factories》2011,10(Z1):S14
Stochastic phenotype switching - or bet hedging - is a pervasive feature of living systems and common in bacteria that experience fluctuating (unpredictable) environmental conditions. Under such conditions, the capacity to generate variable offspring spreads the risk of being maladapted in the present environment, against offspring likely to have some chance of survival in the future. While a rich subject for theoretical studies, little is known about the selective causes responsible for the evolutionary emergence of stochastic phenotype switching. Here we review recent work - both theoretical and experimental - that sheds light on ecological factors that favour switching types over non-switching types. Of particular relevance is an experiment that provided evidence for an adaptive origin of stochastic phenotype switching by subjecting bacterial populations to a selective regime that mimicked essential features of the host immune response. Central to the emergence of switching types was frequent imposition of 'exclusion rules' and 'population bottlenecks' - two complementary faces of frequency dependent selection. While features of the immune response, exclusion rules and bottlenecks are likely to operate in many natural environments. Together these factors define a set of selective conditions relevant to the evolution of stochastic switching, including antigenic variation and bacterial persistence. 相似文献
20.
A large-subunit mitochondrial ribosomal DNA sequence translocated to the nuclear genome of two stone crabs (Menippe) 总被引:1,自引:0,他引:1
Two DNA sequences that appear to be homologous to large-subunit
mitochondrial ribosomal RNA genes have been identified in the stone crabs
Menippe mercenaria and M. adina. Amplification from whole genomic DNA by
polymerase chain reaction (PCR) with oligonucleotide primers based on
conserved portions of large-subunit mitochondrial rRNA genes consistently
amplified two products of similar length (565 and 567 bp). These products
differed at 3% of their nucleotide bases, and could be distinguished by a
HindIII site. Only one of these sequences (designated the A sequence) was
detected by PCR in purified mitochondrial DNA. The other (designated the B
sequence) hybridized to total genomic DNA at a level consistent with a
nuclear genome location. It is unlikely that the type B product would have
been recognized as a nuclear copy by examination of its sequence alone.
This is the first report of a mitochondrial gene sequence translocated into
the nuclear genome of a crustacean.
相似文献