首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   25篇
  2023年   4篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   15篇
  2014年   26篇
  2013年   27篇
  2012年   35篇
  2011年   38篇
  2010年   25篇
  2009年   12篇
  2008年   41篇
  2007年   27篇
  2006年   24篇
  2005年   22篇
  2004年   13篇
  2003年   22篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1987年   2篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
411.
412.
413.
414.
The geographic distribution and origin of CFTR mutations in Germany was evaluated in 658 three-generation families with cystic fibrosis (CF). Fifty different mutations were detected on 1305 parental CF chromosomes from 22 European countries and overseas. The major mutation ΔF508 was identified on 71.5% of all CF chromosomes, followed by R553X (1.8%), N1303K (1.3%), G542X (1.1%), G551D (0.8%) and R347P (0.8%). According to the grandparents’ birthplace, 74% of CF chromosomes had their origin in Germany; the ΔF508 percentage was 77%, 75%, 70% and 62% in northern, southern, western and eastern Germany, respectively. Ten or more mutant alleles in the investigated CF gene pool originated from Austria, the Czech Republic, Poland, Russia, Turkey and the Ukraine. This widespread geographic origin of CFTR mutations in today’s Germany reflects the many demographic changes and migrations in Central Europe during the 20th century. Received: 10 October 1995 / Revised: 9 January 1995  相似文献   
415.
The mechanism of an increase in metabolic rate induced by lactate was investigated in the toad Bufo marinus. Oxygen consumption (Vo(2)) was analyzed in fully aerobic animals under hypoxic conditions (7% O(2) in air), accompanied by measurements of catecholamines in the plasma, and was measured in isolated hepatocytes in vitro under normoxia by using specific inhibitors of lactate proton symport [alpha-cyano-4-hydroxycinnamate (CHC)] and sodium proton exchange (EIPA). The rise in metabolic rate in vivo can be elicited by infusions of hyperosmotic (previous findings) or isosmotic sodium lactate solutions (this study). Despite previous findings of reduced metabolic stimulation under the effect of adrenergic blockers, the increase in Vo(2) in vivo was not associated with elevated plasma catecholamine levels, suggesting local release and effect. In addition to the possible in vivo effect via catecholamines, lactate induced a rise in Vo(2) of isolated hepatocytes, depending on the concentration present in a weakly buffered Ringer solution at pH 7.0. No increase was found at higher pH values (7.4 or 7.8) or in HEPES-buffered Ringer solution. Inhibition of the Lac(-)-H(+) transporter with alpha-CHC or of the Na(+)/H(+) exchanger with EIPA prevented the increase in metabolic rate. We conclude that increased Vo(2) at an elevated systemic lactate level may involve catecholamine action, but it is also caused by an increased energy demand of cellular acid-base regulation via stimulation of Na(+)/H(+) exchange and thereby Na(+)-K(+)-ATPase. The effect depends on entry of lactic acid into the cells via lactate proton symport, which is likely favored by low cellular surface pH. We suggest that these energetic costs should also be considered in other physiological phenomena, e.g., when lactate is present during excess, postexercise Vo(2).  相似文献   
416.
Quality–quantity tradeoffs govern the production of propagules across taxa and can explain variability in life-history traits in higher organisms. A quality–quantity tradeoff was recently discovered in spore forming bacteria, but whether it impacts fitness is unclear. Here we show both theoretically and experimentally that the nutrient supply during spore revival determines the fitness advantage associated with different sporulation behaviors in Bacillus subtilis. By tuning sporulation rates we generate spore-yield and spore-quality strategists that compete with each other in a microscopic life-cycle assay. The quality (yield) strategist is favored when spore revival is triggered by poor (rich) nutrients. We also show that natural isolates from the gut and soil employ different life-cycle strategies that result from genomic variations in the number of rap-phr signaling systems. Taken together, our results suggest that a spore quality–quantity tradeoff contributes to the evolutionary adaptation of sporulating bacteria.Subject terms: Bacterial genetics, Biological sciences, Bacterial evolution  相似文献   
417.
418.
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1  chloroplasts a functional maltase (MAL) from baker’s yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.

Expressing a yeast maltase in chloroplasts of the Arabidopsis maltose transporter mutant mex1 prevents the marked developmental defects typical for that mutant and enhances plant frost tolerance.  相似文献   
419.
420.
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.Subject terms: Bacterial genetics, Evolution  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号