首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   25篇
  2023年   4篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   15篇
  2014年   26篇
  2013年   27篇
  2012年   35篇
  2011年   38篇
  2010年   25篇
  2009年   12篇
  2008年   42篇
  2007年   27篇
  2006年   24篇
  2005年   22篇
  2004年   13篇
  2003年   22篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1987年   2篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
421.
Assessing the genetic adaptive potential of populations and species is essential for better understanding evolutionary processes. However, the expression of genetic variation may depend on environmental conditions, which may speed up or slow down evolutionary responses. Thus, the same selection pressure may lead to different responses. Against this background, we here investigate the effects of thermal stress on genetic variation, mainly under controlled laboratory conditions. We estimated additive genetic variance (VA), narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) under both benign control and stressful thermal conditions. We included six species spanning a diverse range of plant and animal taxa, and a total of 25 morphological and life-history traits. Our results show that (1) thermal stress reduced fitness components, (2) the majority of traits showed significant genetic variation and that (3) thermal stress affected the expression of genetic variation (VA, h2 or CVA) in only one-third of the cases (25 of 75 analyses, mostly in one clonal species). Moreover, the effects were highly species-specific, with genetic variation increasing in 11 and decreasing in 14 cases under stress. Our results hence indicate that thermal stress does not generally affect the expression of genetic variation under laboratory conditions but, nevertheless, increases or decreases genetic variation in specific cases. Consequently, predicting the rate of genetic adaptation might not be generally complicated by environmental variation, but requires a careful case-by-case consideration.Subject terms: Evolutionary genetics, Climate-change ecology, Biodiversity  相似文献   
422.
423.
424.
425.
426.
427.
428.
Aging is the main risk factor for the appearance of age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common form of dementia, characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the main histopathological hallmarks in AD brains. The core of these deposits are predominantly amyloid fibrils in SPs and hyperphosphorylated Tau protein in NFTs, but other molecular components can be found associated with these pathological lesions. Herein, an extensive literature review was carried out to obtain the SPs and NFTs proteomes, followed by a bioinformatic analysis and further putative biomarker validation. For SPs, 857 proteins were recovered, and, for NFTs, 627 proteins of which 375 occur in both groups and represent the common proteome. Gene Ontology (GO) enrichment analysis permitted the identification of biological processes and the molecular functions most associated with these lesions. Analysis of the SPs and NFTs common proteins unraveled pathways and molecular targets linking both histopathological events. Further, validation of a putative phosphotarget arising from the in silico analysis was performed in serum-derived extracellular vesicles from AD patients. This bioinformatic approach contributed to the identification of putative molecular targets, valuable for AD diagnostic or therapeutic intervention.  相似文献   
429.
430.
1,25-Dihydroxyvitamin D3 (1,25) is a structurally unique steroid hormone because it not only possesses the complete 25-hydroxycholesterol side chain, but most notably, it possesses a seco-B triene structure (it lacks a B-ring and is usually depicted in a non-steroidal, extended conformation). In contrast, the classical steroid hormones possess a truncated side chain (progesterone, cortisol, and aldosterone) or no side chain (estradiol and testosterone) and they all possess the fully intact ABCD steroid rings. These structural differences render the seco-B-steroid 1,25 considerably more conformationally flexible. Since 1,25 is now known to target a myriad of tissues where specific interactions occur to produce an array of biological responses, it is of interest to determine whether different topologies of 1,25 (resulting from different conformational orientations of 1,25) are necessary to interact effectively at the different target sites. The array of biological responses include both non-genomic and genomic effects and there is considerable promise for the efficacy of 1,25 analogs as chemotherapeutic agents in a variety of human disease states. For the non-genomic calcium transport response of transcaltachia, the finding that two 6-s-cis locked analogs, 1,25-dihydroxyprevitamin D3 (pre-1,25) and 1,25-dihydroxylumisterol3 (1,25-Lumi), are equipotent to 1,25, points strongly to the involvement of the 6-s-cis conformer of 1,25 as the biologically active conformer. Since there is a continuum of easily interconvertible 6,7-single bond conformers of the seco-B ring available to 1,25, conformational minima (either local or global) may have little to do with the manner in which 1,25 is bound to receptor. For the genomic calcium transport response, and for other genomic (or non-genomic) effects, there is no clear evidence whether the steroidal (s-cis) or non-steroidal (s-trans) conformer of 1,25 is involved. In order to address this matter further, efforts are underway to evaluate other conformationally locked analogs of 1,25 which might mimic either the planar 6-s-trans-1,25 or some intermediate conformer between it and the planar-6-s-cis form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号