首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   31篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   11篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   28篇
  2013年   29篇
  2012年   37篇
  2011年   39篇
  2010年   25篇
  2009年   13篇
  2008年   41篇
  2007年   27篇
  2006年   24篇
  2005年   23篇
  2004年   14篇
  2003年   23篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有462条查询结果,搜索用时 15 毫秒
441.
442.
The mechanism of an increase in metabolic rate induced by lactate was investigated in the toad Bufo marinus. Oxygen consumption (Vo(2)) was analyzed in fully aerobic animals under hypoxic conditions (7% O(2) in air), accompanied by measurements of catecholamines in the plasma, and was measured in isolated hepatocytes in vitro under normoxia by using specific inhibitors of lactate proton symport [alpha-cyano-4-hydroxycinnamate (CHC)] and sodium proton exchange (EIPA). The rise in metabolic rate in vivo can be elicited by infusions of hyperosmotic (previous findings) or isosmotic sodium lactate solutions (this study). Despite previous findings of reduced metabolic stimulation under the effect of adrenergic blockers, the increase in Vo(2) in vivo was not associated with elevated plasma catecholamine levels, suggesting local release and effect. In addition to the possible in vivo effect via catecholamines, lactate induced a rise in Vo(2) of isolated hepatocytes, depending on the concentration present in a weakly buffered Ringer solution at pH 7.0. No increase was found at higher pH values (7.4 or 7.8) or in HEPES-buffered Ringer solution. Inhibition of the Lac(-)-H(+) transporter with alpha-CHC or of the Na(+)/H(+) exchanger with EIPA prevented the increase in metabolic rate. We conclude that increased Vo(2) at an elevated systemic lactate level may involve catecholamine action, but it is also caused by an increased energy demand of cellular acid-base regulation via stimulation of Na(+)/H(+) exchange and thereby Na(+)-K(+)-ATPase. The effect depends on entry of lactic acid into the cells via lactate proton symport, which is likely favored by low cellular surface pH. We suggest that these energetic costs should also be considered in other physiological phenomena, e.g., when lactate is present during excess, postexercise Vo(2).  相似文献   
443.
Quality–quantity tradeoffs govern the production of propagules across taxa and can explain variability in life-history traits in higher organisms. A quality–quantity tradeoff was recently discovered in spore forming bacteria, but whether it impacts fitness is unclear. Here we show both theoretically and experimentally that the nutrient supply during spore revival determines the fitness advantage associated with different sporulation behaviors in Bacillus subtilis. By tuning sporulation rates we generate spore-yield and spore-quality strategists that compete with each other in a microscopic life-cycle assay. The quality (yield) strategist is favored when spore revival is triggered by poor (rich) nutrients. We also show that natural isolates from the gut and soil employ different life-cycle strategies that result from genomic variations in the number of rap-phr signaling systems. Taken together, our results suggest that a spore quality–quantity tradeoff contributes to the evolutionary adaptation of sporulating bacteria.Subject terms: Bacterial genetics, Biological sciences, Bacterial evolution  相似文献   
444.
445.
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1  chloroplasts a functional maltase (MAL) from baker’s yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.

Expressing a yeast maltase in chloroplasts of the Arabidopsis maltose transporter mutant mex1 prevents the marked developmental defects typical for that mutant and enhances plant frost tolerance.  相似文献   
446.
447.
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.Subject terms: Bacterial genetics, Evolution  相似文献   
448.
Background aimsDecentralized, or distributed, manufacturing that takes place close to the point of care has been a manufacturing paradigm of heightened interest within the cell therapy domain because of the product's being living cell material as well as the need for a highly monitored and temperature-controlled supply chain that has the potential to benefit from close proximity between manufacturing and application.MethodsTo compare the operational feasibility and cost implications of manufacturing autologous chimeric antigen receptor T (CAR T)-cell products between centralized and decentralized schemes, a discrete event simulation model was built using ExtendSIM 9 for simulating the patient-to-patient supply chain, from the collection of patient cells to the final administration of CAR T therapy in hospitals. Simulations were carried out for hypothetical systems in the UK using three demand levels—low (100 patients per annum), anticipated (200 patients per annum) and high (500 patients per annum)—to assess resource allocation, cost per treatment and system resilience to demand changes and to quantify the risks of mix-ups within the supply chain for the delivery of CAR T treatments.ResultsThe simulation results show that although centralized manufacturing offers better economies of scale, individual facilities in a decentralized system can spread facility costs across a greater number of treatments and better utilize resources at high demand levels (annual demand of 500 patients), allowing for an overall more comparable cost per treatment. In general, raw material and consumable costs have been shown to be one of the greatest cost drivers, and genetic modification-associated costs have been shown to account for over one third of raw material and consumable costs. Turnaround time per treatment for the decentralized scheme is shown to be consistently lower than its centralized counterpart, as there is no need for product freeze-thaw, packaging and transportation, although the time savings is shown to be insignificant in the UK case study because of its rather compact geographical setting with well-established transportation networks. In both schemes, sterility testing lies on the critical path for treatment delivery and is shown to be critical for treatment turnaround time reduction.ConclusionsConsidering both cost and treatment turnaround time, point-of-care manufacturing within the UK does not show great advantages over centralized manufacturing. However, further simulations using this model can be used to understand the feasibility of decentralized manufacturing in a larger geographical setting.  相似文献   
449.
450.
The central‐marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter‐population genetic differentiation compared to range cores. CMH predictions are based on long‐held “abundant‐centre” assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying “abundant‐centre” assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to “abundant‐centre” assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号