首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   31篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   11篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   28篇
  2013年   29篇
  2012年   37篇
  2011年   39篇
  2010年   25篇
  2009年   13篇
  2008年   41篇
  2007年   27篇
  2006年   24篇
  2005年   23篇
  2004年   14篇
  2003年   23篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有462条查询结果,搜索用时 31 毫秒
411.
Scattered reports in the literature have suggested that the metabolite 25-hydroxyvitamin D(3) [25(OH)D(3)] has biological activity. In the present work, perfusion of isolated duodenal loops of normal chickens with 100 nM 25(OH)D(3) resulted in enhanced transport of (45)Ca within 2 min relative to the vehicle controls. We then tested the effect of a range of 25(OH)D(3) concentrations on (45)Ca handling by isolated intestinal cells in time course studies. Following a basal uptake period, cell suspensions from 7-week old chicks were treated either with 25, 100, or 300 nM 25(OH)D(3), or the vehicle ethanol (0.01%, final concentration). Both 25 and 100 nM 25(OH)D(3) resulted in a significant (P < 0.05) reduction in (45)Ca levels, relative to controls, between 1-10 min after treatment, while 300 nM 25(OH)D(3) resulted in a significant increase in (45)Ca levels, relative to controls, after 10 min of incubation. The effect of 100 nM 25(OH)D(3) (a physiological level) on cell calcium was abolished by the presence of 6.5 nM 24,25-dihydroxyvitamin D(3). In cell preparations from 14- or 28-week old birds 100nM 25(OH)D(3) had no effect, relative to vehicle controls. Incubation of cells with 2 microM BAY K8644, a calcium channel activator, stimulated (45)Ca uptake within 3 min relative to vehicle controls (P < 0.05), while addition of either 20 microM forskolin or 100 nM phorbol ester (stimulators of the PKA and PKC pathways, respectively) resulted in enhanced radionuclide levels after 10 min of incubation (P < 0.05, relative to corresponding controls). Finally, cells were treated with 100 nM 25(OH)D(3) or vehicle and samples taken at various times for analyses of protein kinase C and A activities. No effect of 25(OH)D(3) on protein kinase C activity was observed, while protein kinase A activity was stimulated to nearly 200% of controls at 1 min after 25(OH)D(3) addition (P < 0.05, relative to corresponding controls) and began declining at 3 min, returning to control levels 5 min after additions. We conclude that 25(OH)D(3) has a direct effect on calcium handling in enterocytes of young animals that may in part be mediated by the protein kinase A signal transduction pathway.  相似文献   
412.
The enzymes involved in the biosynthesis of riboflavin represent attractive targets for the development of drugs against bacterial pathogens, because the inhibitors of these enzymes are not likely to interfere with enzymes of the mammalian metabolism. Lumazine synthase catalyzes the penultimate step in the riboflavin biosynthesis pathway. A number of substituted purinetrione compounds represent a new class of highly specific inhibitors of lumazine synthase from Mycobacterium tuberculosis. To develop potent antibiotics for the treatment of tuberculosis, we have determined the structure of lumazine synthase from M. tuberculosis in complex with two purinetrione inhibitors and have studied binding via isothermal titration calorimetry. The structures were determined by molecular replacement using lumazine synthase from Saccharomyces cerevisiae as a search model and refined at 2 and 2.3 A resolution. The R-factors were 14.7 and 17.4%, respectively, and the R(free) values were 19.3 and 26.3%, respectively. The enzyme was found to be a pentamer consisting of five subunits related by 5-fold local symmetry. The comparison of the active site architecture with the active site of previously determined lumazine synthase structures reveals a largely conserved topology with the exception of residues Gln141 and Glu136, which participate in different charge-charge interactions in the core space of the active site. The impact of structural changes in the active site on the altered binding and catalytic properties of the enzyme is discussed. Isothermal titration calorimetry measurements indicate highly specific binding of the purinetrione inhibitors to the M. tuberculosis enzyme with dissociation constants in micromolar range.  相似文献   
413.
The alkylsulfatase AtsK from Pseudomonas putida S-313 is a member of the non-heme iron(II)-alpha-ketoglutarate-dependent dioxygenase superfamily. In the initial step of their catalytic cycle, enzymes belonging to this widespread and versatile family coordinate molecular oxygen to the iron center in the active site. The subsequent decarboxylation of the cosubstrate alpha-ketoglutarate yields carbon dioxide, succinate, and a highly reactive ferryl (IV) species, which is required for substrate oxidation via a complex mechanism involving the transfer of radical species. Non-productive activation of oxygen may lead to harmful side reactions; therefore, such enzymes need an effective built-in protection mechanism. One of the ways of controlling undesired side reactions is the self-hydroxylation of an aromatic side chain, which leads to an irreversibly inactivated species. Here we describe the crystal structure of the alkylsulfatase AtsK in complexes with succinate and with Fe(II)/succinate. In the crystal structure of the AtsK-Fe(II)-succinate complex, the side chain of Tyr(168) is co-ordinated to the iron, suggesting that Tyr(168) is the target of enzyme self-hydroxylation. This is the first structural study of an Fe(II)-alpha-ketoglutarate-dependent dioxygenase that presents an aromatic side chain coordinated to the metal center, thus allowing structural insight into this protective mechanism of enzyme self-inactivation.  相似文献   
414.
The alkylsulfatase AtsK from Pseudomonas putida S-313 belongs to the widespread and versatile non-heme iron(II) alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes the oxygenolytic cleavage of a variety of different alkyl sulfate esters to the corresponding aldehyde and sulfate. The enzyme is only expressed under sulfur starvation conditions, providing a selective advantage for bacterial growth in soils and rhizosphere. Here we describe the crystal structure of AtsK in the apo form and in three complexes: with the cosubstrate alpha-ketoglutarate, with alpha-ketoglutarate and iron, and finally with alpha-ketoglutarate, iron, and an alkyl sulfate ester used as substrate in catalytic studies. The overall fold of the enzyme is closely related to that of the taurine/alpha-ketoglutarate dioxygenase TauD and is similar to the fold observed for other members of the enzyme superfamily. From comparison of these structures with the crystal structure of AtsK and its complexes, we propose a general mechanism for the catalytic cycle of the alpha-ketoglutarate-dependent dioxygenase superfamily.  相似文献   
415.
416.
Protein import into complex plastids of red algal origin is a multistep process including translocons of different evolutionary origins. The symbiont-derived ERAD-like machinery (SELMA), shown to be of red algal origin, is proposed to be the transport system for preprotein import across the periplastidal membrane of heterokontophytes, haptophytes, cryptophytes, and apicomplexans. In contrast to the canonical endoplasmic reticulum-associated degradation (ERAD) system, SELMA translocation is suggested to be uncoupled from proteasomal degradation. We investigated the distribution of known and newly identified SELMA components in organisms with complex plastids of red algal origin by intensive data mining, thereby defining a set of core components present in all examined organisms. These include putative pore-forming components, a ubiquitylation machinery, as well as a Cdc48 complex. Furthermore, the set of known 20S proteasomal components in the periplastidal compartment (PPC) of diatoms was expanded. These newly identified putative SELMA components, as well as proteasomal subunits, were in vivo localized as PPC proteins in the diatom Phaeodactylum tricornutum. The presented data allow us to speculate about the specific features of SELMA translocation in contrast to the canonical ERAD system, especially the uncoupling of translocation from degradation.  相似文献   
417.
418.
419.
At the turn of the 19(th) century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles.  相似文献   
420.
The aerobic Escherichia coli C(4) -dicarboxylate transporter DctA and the anaerobic fumarate/succinate antiporter DcuB function as obligate co-sensors of the fumarate responsive sensor kinase DcuS under aerobic or anaerobic conditions respectively. Overproduction under anaerobic conditions allowed DctA to replace DcuB in co-sensing, indicating their functional equivalence in this capacity. In vivo interaction studies between DctA and DcuS using FRET or a bacterial two-hybrid system (BACTH) demonstrated their interaction. DctA-YFP bound to an affinity column and was able to retain DcuS. DctA shows substantial sequence and secondary structure conservation to Glt(Ph) , the Na(+) /glutamate symporter of Pyrococcus horikoshii with known 3D structure. Topology studies of DctA demonstrated the presence of eight transmembrane helices in an arrangement similar to that of Glt(Ph) . DctA contains an additional predicted amphipathic helix 8b on the cytoplasmic side of the membrane that is specific for DctA and not present in Glt(Ph) . Mutational analysis demonstrated the importance of helix 8b in co-sensing and interaction with DcuS, and the isolated helix 8b showed strong interaction with DcuS. In DcuS, deletion and mutation of the cytoplasmic PAS(C) domain affected the interaction between DctA and DcuS. It is concluded that DctA forms a functional unit or sensor complex with DcuS through specific interaction sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号