首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   25篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   7篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   15篇
  2014年   26篇
  2013年   27篇
  2012年   35篇
  2011年   38篇
  2010年   25篇
  2009年   12篇
  2008年   41篇
  2007年   27篇
  2006年   24篇
  2005年   22篇
  2004年   13篇
  2003年   22篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1987年   2篇
排序方式: 共有431条查询结果,搜索用时 921 毫秒
351.
Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria.  相似文献   
352.
Isolated adult mouse cardiomyocytes are an important tool in cardiovascular research, but are challenging to prepare. Because the energy supply determines cell function and viability, we compared total creatine ([Cr]) and [ATP] in isolated cardiomyocytes with the intact mouse heart. Isolated myocytes suffered severe losses of Cr (−70%) and ATP (−53%). Myocytes were not able to replete [Cr] during a 5 h incubation period in medium supplemented with 1 mM Cr. In contrast, adding 20 mM Cr to the digestion buffers was sufficient to maintain normal [Cr]. Supplementing buffers with 5 mM of inosine (Ino) and adenosine (Ado) to prevent loss of cellular nucleosides partially protected against loss of ATP. To test whether maintaining [ATP] and [Cr] improves contractile function, myocytes were challenged by varying pacing rate from 0.5 to 10 Hz and by adding isoproterenol (Iso) at 5 and 10 Hz. All groups performed well up to 5 Hz, showing a positive cell shortening–frequency relationship; however, only 16% of myocytes isolated under standard conditions were able to sustain pacing with Iso challenge at 10 Hz. In contrast, 30–50% of the myocytes with normal Cr levels were able to contract and maintain low diastolic [Ca2+]. Cell yield also improved in Cr and the Cr/Ino/Ado-treated groups (85–90% vs. 70–75% rod shaped in untreated myocytes). These data suggest that viability and performance of isolated myocytes are improved when they are protected from the severe loss of Cr and ATP during the isolation, making them an even better research tool.  相似文献   
353.
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.  相似文献   
354.
Only a few reports have been published on the interactions between Coxsackievirus B4 (CVB4) and human peripheral blood mononuclear cells (PBMC) but have not been extensively documented. Human serum containing non-neutralizing anti-CVB4 antibodies increased CVB4-induced synthesis of IFNα by PBMC. In this study, we determined if CVB4 and human serum have the ability to activate inflammatory cytokines in addition to IFNα in PBMC cultures. PBMC from healthy donors were inoculated with infectious, inactivated CVB4 or with CVB4 incubated with dilutions of human serum or polyvalent IgG with anti-CVB4 activity. Levels of IFNα, TNFα, IL-6, IL-12, IFNγ and IL-10 in the cell-free supernatants of PBMC cultures were measured using ELISA. Infection was assessed by real-time PCR. PBMC inoculated with CVB4 produced inflammatory cytokines but not IFNα. When CVB4 was incubated with serum or IgG, IFNα was detected in the culture supernatants, and high concentrations of TNFα and IL-6 were measured. The concentrations of TNFα and IL-6 were not reduced in cultures inoculated with inactivated CVB4, whereas the IgG-dependent enhancement of IFNα, IL-6 and TNFα production with inactivated virus was suppressed. The potentiation of IFNα production was associated with a high intracellular viral load. Infectious and non-infectious CVB4 can induce the production of inflammatory cytokines but not IFNα by PBMC. High levels of IFNα, in addition to TNFα and IL-6, in culture supernatants were obtained when infectious CVB4 was combined with immune serum or IgG, and they were associated with high amounts of intracellular viral RNA.  相似文献   
355.
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.  相似文献   
356.
Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD+ and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD+ binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP+. The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00?±?0.13 U?mg?1 and a K m, NADP + of 0.147?±?0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP+-accepting FDH (v max, 10.25?±?1.63 U?mg?1). However, the half-saturation constant for NADP+ (K m, NADP + , 0.92?±?0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.  相似文献   
357.
Highly dynamic mitochondrial morphology is a prerequisite for fusion and fission. Mitochondrial fusion may represent a rescue mechanism for impaired mitochondria by exchanging constituents (proteins, lipids and mitochondrial DNA) and thus maintaining functionality. Here we followed for the first time the dynamics of a protein complex of the respiratory chain during fusion and fission. HeLa cells with differently labelled respiratory Complex I were fused and the dynamics of Complex I were investigated. The mitochondrial proteins spread throughout the whole mitochondrial population within 3 to 6 h after induction of cell fusion. Mitochondria of fused cells displayed a patchy substructure where the differently labelled proteins occupied separate and distinct spaces. This patchy appearance was already – although less pronounced – observed within single mitochondria before fusion, indicating a specific localization of Complex I with restricted diffusion within the inner membrane. These findings substantiate the view of a homogenous mitochondrial population due to constantly rearranging mitochondria, but also indicate the existence of distinct inner mitochondrial sub-compartments for respiratory chain complexes.  相似文献   
358.
Under haplodiploidy, a characteristic trait of all Hymenoptera, females develop from fertilised eggs, and males from unfertilised ones. Males are therefore typically haploid. Yet, inbreeding can lead to the production of diploid males that often fail in development, are sterile or are of lower fertility. In most Hymenoptera, inbreeding is avoided by dispersal flights of one or both sexes, leading to low diploid male loads. We investigated causes for the production of diploid males and their performance in a highly inbred social Hymenopteran species. In the ant Hypoponera opacior, inbreeding occurs between wingless sexuals, which mate within the mother nest, whereas winged sexuals outbreed during mating flights earlier in the season. Wingless males mate with queen pupae and guard their mating partners. We found that they mated randomly with respect to relatedness, indicating that males do not avoid mating with close kin. These frequent sib‐matings lead to the production of diploid males, which are able to sire sterile triploid offspring. We compared mating activity and lifespan of haploid and diploid wingless males. As sexual selection acts on the time of emergence and body size in this species, we also investigated these traits. Diploid males resembled haploid ones in all investigated traits. Hence, albeit diploid males cannot produce fertile offspring, they keep up with haploid males in their lifetime mating success. Moreover, by fathering viable triploid workers, they contribute to the colonies' work force. In conclusion, the lack of inbreeding avoidance led to frequent sib‐matings of wingless sexuals, which in turn resulted in the regular production of diploid males. However, in contrast to many other Hymenopteran species, diploid males exhibit normal sexual behaviour and sire viable, albeit sterile daughters.  相似文献   
359.
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号