首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2006年   1篇
  2004年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
12.
13.
Oxidative protein folding in the endoplasmic reticulum (ER) is associated with the formation of native disulfide bonds, which inevitably results in the formation of hydrogen peroxide (H(2)O(2)). Particularly in pancreatic β-cells with their high secretory activity and extremely low antioxidant capacity, the H(2)O(2) molecules generated during oxidative protein folding could represent a significant oxidative burden. Therefore this study was conducted to elucidate the H(2)O(2) generation during disulfide bond formation in insulin-producing RINm5F cells by targeting and specifically expressing the H(2)O(2)-sensitive biosensor HyPer in the ER (ER-HyPer). In addition the influence of overexpression of the H(2)O(2)-metabolizing ER-resident peroxiredoxin IV (PRDXIV) on H(2)O(2) levels was examined. The ER-HyPer fluorescent protein was completely oxidized, whereas HyPer expressed in cytosol, peroxisomes, and mitochondria was prevalently in the reduced state, indicating a high basal H(2)O(2) concentration in the ER lumen. These results could also be confirmed in non-insulin-producing COS-7 cells. Overexpression of PRDXIV in RINm5F cells effectively protected against H(2)O(2)-mediated toxicity; however, it did not affect the fluorescence signal of ER-HyPer. Moreover, the inhibition of de novo protein synthesis and the associated H(2)O(2) generation by cycloheximide had no influence on the ER-HyPer redox state. Taken together, these findings strongly suggest that the H(2)O(2)-sensitive biosensor reflects exclusively the oxidative milieu in the ER and not the H(2)O(2) concentration in the ER lumen.  相似文献   
14.
Genetic variation on the Y chromosome has not been convincingly implicated in prostate cancer risk. To comprehensively analyze the role of inherited Y chromosome variation in prostate cancer risk in individuals of European ancestry, we genotyped 34 binary Y chromosome markers in 3,995 prostate cancer cases and 3,815 control subjects drawn from four studies. In this set, we identified nominally significant association between a rare haplogroup, E1b1b1c, and prostate cancer in stage I (P = 0.012, OR = 0.51; 95% confidence interval 0.30-0.87). Population substructure of E1b1b1c carriers suggested Ashkenazi Jewish ancestry, prompting a replication phase in individuals of both European and Ashkenazi Jewish ancestry. The association was not significant for prostate cancer overall in studies of either Ashkenazi Jewish (1,686 cases and 1,597 control subjects) or European (686 cases and 734 control subjects) ancestry (P(meta) = 0.078), but a meta-analysis of stage I and II studies revealed a nominally significant association with prostate cancer risk (P(meta) = 0.010, OR = 0.77; 95% confidence interval 0.62-0.94). Comparing haplogroup frequencies between studies, we noted strong similarities between those conducted in the US and France, in which the majority of men carried R1 haplogroups, resembling Northwestern European populations. On the other hand, Finns had a remarkably different haplogroup distribution with a preponderance of N1c and I1 haplogroups. In summary, our results suggest that inherited Y chromosome variation plays a limited role in prostate cancer etiology in European populations but warrant follow-up in additional large and well characterized studies of multiple ethnic backgrounds.  相似文献   
15.
Type 1 diabetes may depend on cytokine-induced β-cell death and therefore the current investigation was performed in order to elucidate this response in Shb-deficient islets.A combination of interleukin-1β and interferon-γ caused a diminished β-cell death response in Shb null islets. Furthermore, the induction of an unfolded protein response (UPR) by adding cyclopiazonic acid did not increase cell death in Shb-deficient islets, despite simultaneous expression of UPR markers. The heat-shock protein Hsp70 was more efficiently induced in Shb knockout islets, providing an explanation for the decreased susceptibility of Shb-deficient islets to cytokines.It is concluded that islets deficient in the Shb protein are less susceptible to cytotoxic conditions, and that this partly depends on their increased ability to induce Hsp70 under such circumstances. Interference with Shb signaling may provide means to improve β-cell viability under conditions of β-cell stress.  相似文献   
16.
17.
Mimitin, a novel mitochondrial protein, has been shown to act as a molecular chaperone for the mitochondrial complex I and to regulate ATP synthesis. During Type 1 diabetes development, pro-inflammatory cytokines induce mitochondrial damage in pancreatic β-cells, inhibit ATP synthesis and reduce glucose-induced insulin secretion. Mimitin was expressed in rat pancreatic islets including β-cells and decreased by cytokines. In the ob/ob mouse, a model of insulin resistance and obesity, mimitin expression was down-regulated in liver and brain, up-regulated in heart and kidney, but not affected in islets. To further analyse the impact of mimitin on β-cell function, two β-cell lines, one with a low (INS1E) and another with a higher (MIN6) mimitin expression were studied. Mimitin overexpression protected INS1E cells against cytokine-induced caspase 3 activation, mitochondrial membrane potential reduction and ATP production inhibition, independently from the NF-κB (nuclear factor κB)-iNOS (inducible NO synthase) pathway. Mimitin overexpression increased basal and glucose-induced insulin secretion and prevented cytokine-mediated suppression of insulin secretion. Mimitin knockdown in MIN6 cells had opposite effects to those observed after overexpression. Thus mimitin has the capacity to modulate pancreatic islet function and to reduce cytokine toxicity.  相似文献   
18.
Nitric oxide (NO), produced by the action of the inducible NO synthase, plays a crucial role in cytokine toxicity to pancreatic beta cells during type 1 diabetes development. It was the aim of this study to analyze the role of the neuronal NOS (nNOS) in proinflammatory cytokine-mediated beta cell toxicity. Expression of different isoforms of nitric oxide synthase in insulin-secreting INS1E cells and rat islets was analyzed by quantitative real-time PCR and Western blotting. The expression of nNOS in insulin-secreting INS1E cells was similar to that found in rat brain, while two other isoforms, namely the endothelial eNOS and inducible iNOS were not expressed in untreated cells. IL-1β alone or in combination with TNF-α and/or IFNγ induced iNOS but not eNOS expression. In contrast, nNOS expression was strongly decreased by the mixture of the three proinflammatory cytokines (IL-1β, TNF-α and IFNγ) both on the gene and protein level in INS1E cells and rat islet cells. The effects of cytokines on glucose-induced insulin-secretion followed the pattern of nNOS expression reduction and, on the other hand, of the iNOS induction. The data indicate that a low level of nitric oxide originating from the constitutive expression of nNOS in pancreatic beta cells is not deleterious. In particular since proinflammatory cytokines reduce this expression. This nNOS suppression can compensate for NO generation by low concentrations of IL-1β through iNOS induction. Thus, this basal nNOS expression level in pancreatic beta cells represents a protective element against cytokine toxicity.  相似文献   
19.
20.
Although largely involved in innate and adaptive immunity, NF-kappa B plays an important role in vertebrate development. In chicks, the inactivation of the NF-kappa B pathway induces functional alterations of the apical ectodermal ridge, which mediates limb outgrowth. In mice, the complete absence of NF-kappa B activity leads to prenatal death and neural tube defects. Here, we report the cloning and characterization of NF-kappa B/I kappa B proteins in zebra fish. Despite being ubiquitously expressed among the embryonic tissues, NF-kappa B/I kappa B members present distinct patterns of gene expression during the early zebra fish development. Biochemical assays indicate that zebra fish NF-kappa B proteins are able to bind consensus DNA-binding (kappa B) sites and inhibitory I kappa B alpha proteins from mammals. We show that zebra fish I kappa B alphas are degraded in a time-dependent manner after induction of transduced murine embryo fibroblasts (MEFs) and that these proteins are able to rescue NF-kappa B activity in I kappa B alpha(-/-) MEFs. Expression of a dominant-negative form of the murine I kappa B alpha (mI kappa B alpha M), which is able to block NF-kappa B in zebra fish cells, interferes with the notochord differentiation, generating no tail (ntl)-like embryos. This phenotype can be rescued by coinjection of the T-box gene ntl (Brachyury homologue), which is typically required for the formation of posterior mesoderm and axial development, suggesting that ntl lies downstream of NF-kappa B . We further show that ntl and Brachyury promoter regions contain functional kappa B sites and NF-kappa B can directly modulate ntl expression. Our study illustrates the conservation and compatibility of NF-kappa B/I kappa B proteins among vertebrates and the importance of NF-kappa B pathway in mesoderm formation during early embryogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号