首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   10篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1994年   1篇
  1989年   1篇
  1975年   1篇
  1968年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
Copper sulfate can cause different pathologies in different organ systems during development. We determined the effects of toxic levels of copper sulfate on brain development in term Hubbard broiler chicks using stereological and biochemical analyses. Hubbard broiler chicken eggs were divided into three groups: controls with no treatment, sham-treated animals and an experimental group. On day 1, 0.1 ml saline was injected into the air chambers of the sham and experimental groups. The experimental group received also 50 μg copper sulfate. At term (day 21), all chick brains were removed and their volumes were determined using the Cavalieri volume estimation. Parallel biochemical analyses were carried out for glutathione and malondialdehyde levels in the brain tissues as indicators of oxidative damage. With copper treatment, the mean brain volume (8079 μm3) was significantly decreased compared to both the control (10075 μm3) and sham (9547 μm3) groups. Copper treatment (143.8 nmol/g tissue) showed significantly decreased malondialdehyde levels compared to the control (293.6 nmol/g tissue) and sham groups (268.8 nmol/g tissue). Copper treatment (404.5 nmol/g tissue) showed significantly increased malondialdehyde levels compared to the control (158.6 nmol/g tissue) and sham (142.8 nmol/g tissue) groups. The morphological and biochemical parameters we measured demonstrated that in term Hubbard broiler chicks, toxic levels of copper sulfate cause developmental and oxidative brain damage.  相似文献   
82.

Background  

In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3) comparing the different gene selections and the influence of increasing the model complexity; (4) functional analysis of the informative genes.  相似文献   
83.

Introduction  

Rheumatoid arthritis (RA) is a multi-organ inflammatory disorder associated with high cardiovascular morbidity and mortality. We sought to assess cardiac involvement using a comprehensive cardiac magnetic resonance imaging (cMRI) approach and to determine its association with disease characteristics in RA patients without symptomatic cardiac disease.  相似文献   
84.

Background

Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods.

Results

Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group.

Conclusion

The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice.  相似文献   
85.
86.
Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function.  相似文献   
87.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号