首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   8篇
  87篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
41.
The invasion or expansion of non-native species into new geographic areas can pose a major threat to the conservation of biodiversity. These threats are augmented when the newly-arrived species interacts with native species that are already threatened by other ecological or anthropogenic processes. Potential interactions can include both competition for scarce resources and reproductive interference, including hybridisation. Understanding the dynamics of these interactions forms a crucial component of conservation management strategies. A recent contact zone occurs in the north of Chile between the endangered Chilean woodstar (Eulidia yarrellii) and the closely-related and recently-arrived Peruvian sheartail (Thaumastura cora), which expanded its range from Peru into Chile during the 1970s. We characterised the interactions between the species by combining population size estimates with molecular, morphological and behavioural data. We show that a low degree of hybridisation, but not introgression, is occurring between the two species. Despite interspecific morphological similarities, behavioural observations indicate that food niche overlap between the species is relatively low, and that the dietary breadth of sheartails is larger, which may have aided the species’ range expansion. Finally, woodstars dominate the sheartails in male–male territorial interactions. However, potentially increased energetic costs for woodstars associated with frequent territorial chases and courtship displaying with sheartails may exacerbate the effects of other threats on woodstar viability, such as human-induced habitat modification. This study highlights the value of implementing multidisciplinary approaches in conservation biology to gain a more complete understanding of interactions between recently-arrived and endangered species.  相似文献   
42.
A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody. Detection is achieved in less than 1h straight from mock wound fluid without any extensive sample preparation steps. The limits of detection of 3.3 pM for TREM-1, 1.1 nM for MMP-9 and 1.4 nM for HSL are either near or below the threshold required to indicate infection. A relatively large dynamic range for sensor response is also found, consistent with interaction between neighbouring antibody-antigen complexes in the close-packed surface layer. Together, these three novel electrochemical immunosensors demonstrate viable multi-parameter sensing with the required sensitivity for rapid wound infection detection directly from a clinically relevant specimen.  相似文献   
43.
Matrix metalloproteinases (MMP) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A) in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S(1)' specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S(1)' subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC(50) = 7.06) is found for BAM, a compound exhibiting also selectivity (>20) towards MMP-2, as compared to MMP-9, the other member of the gelatinases.  相似文献   
44.
45.
IL-1R8, also known as SIGIRR or TIR8, is a trans-membrane protein belonging to the IL-1 receptor family. The human gene includes ten exons, and alternative splicing can result in different isoforms. We, herein, characterized a longer isoform of IL-1R8 containing an in-frame additional sequence between the TIR domain and the C-terminal portion of the protein. IL-1R8 Long (IL-1R8L1) mRNA was specifically expressed and regulated in distinct cell lines, in a manner similar to the classic isoform. Overexpression of IL-1R8L1 resulted in the production of a corresponding protein that showed a pattern of cell localization similar to the classic isoform. An antibody directed against an IL-1R8L1 specific peptide, detected this novel isoform in different cell lines and tissues where this protein may complement the anti-inflammatory functions of classic IL-1R8.  相似文献   
46.
Angiopoietin-like 3 (ANGPTL3) regulates lipoprotein metabolism by modulating extracellular lipases. Loss-of function mutations in ANGPTL3 gene cause familial combined hypolipidemia (FHBL2). The mode of inheritance and hepatic and vascular consequences of FHBL2 have not been fully elucidated. To get further insights on these aspects, we reevaluated the clinical and the biochemical characteristics of all reported cases of FHBL2. One hundred fifteen FHBL2 individuals carrying 13 different mutations in the ANGPTL3 gene (14 homozygotes, 8 compound heterozygotes, and 93 heterozygotes) and 402 controls were considered. Carriers of two mutant alleles had undetectable plasma levels of ANGPTL3 protein, whereas heterozygotes showed a reduction ranging from 34% to 88%, according to genotype. Compared with controls, homozygotes as well as heterozygotes showed a significant reduction of all plasma lipoproteins, while no difference in lipoprotein(a) [Lp(a)] levels was detected between groups. The prevalence of fatty liver was not different in FHBL2 subjects compared with controls. Notably, diabetes mellitus and cardiovascular disease were absent among homozygotes. FHBL2 trait is inherited in a codominant manner, and the lipid-lowering effect of two ANGPTL3 mutant alleles was more than four times larger than that of one mutant allele. No changes in Lp(a) were detected in FHBL2. Furthermore, our analysis confirmed that FHBL2 is not associated with adverse clinical sequelae. The possibility that FHBL2 confers lower risk of diabetes and cardiovascular disease warrants more detailed investigation.  相似文献   
47.
48.
In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the Leuconostoc-Weissella group, provides evidence of the genetic basis of atypical resistances, and demonstrates the inter-species transfer of erythromycin resistance.  相似文献   
49.
We previously suggested that, in obese animals and humans, white adipose tissue inflammation results from the death of hypertrophic adipocytes; these are then cleared by macrophages, giving rise to distinctive structures we denominated crown-like structures. Here we present evidence that subcutaneous and visceral hypertrophic adipocytes of leptin-deficient (ob/ob and db/db) obese mice exhibit ultrastructural abnormalities (including calcium accumulation and cholesterol crystals), many of which are more common in hyperglycemic db/db versus normoglycemic ob/ob mice and in visceral versus subcutaneous depots. Degenerating adipocytes whose intracellular content disperses in the extracellular space were also noted in obese mice; in addition, increased anti-reactive oxygen species enzyme expression in obese fat pads, documented by RT-PCR and immunohistochemistry, suggests that ultrastructural changes are accompanied by oxidative stress. RT-PCR showed NLRP3 inflammasome activation in the fat pads of both leptin-deficient and high-fat diet obese mice, in which formation of active caspase-1 was documented by immunohistochemistry in the cytoplasm of several hypertrophic adipocytes. Notably, caspase-1 was not detected in FAT-ATTAC transgenic mice, where adipocytes die of apoptosis. Thus, white adipocyte overexpansion induces a stress state that ultimately leads to death. NLRP3-dependent caspase-1 activation in hypertrophic adipocytes likely induces obese adipocyte death by pyroptosis, a proinflammatory programmed cell death.  相似文献   
50.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous sources of DNA damage. DNA integrity is maintained by the coordinated action of DNA damage response mechanisms and DNA repair. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage but are potentially error-prone. Here, we investigate the role of DNA polymerase κ (pol κ) in TLS across alkylated lesions by silencing this polymerase (pol) in human cells using transient small RNA interference. We show that human pol κ has a significant protective role against methyl nitrosourea (MNU)-associated cytotoxicity without affecting significantly mutagenicity. The increase in MNU-induced cytotoxicity when pol κ is down-regulated was affected by the levels of O6-methylguanine DNA methyltransferase and fully abolished when mismatch repair (MMR) was defective. Following MNU treatment, the cell cycle profile was unaffected by the pol κ status. The downregulation of pol κ caused a severe delay in the onset of the second mitosis that was fully dependent on the presence of O6-methylguanine ( O6-meGua) lesions. After MNU exposure, in the absence of pol κ, the frequency of sister chromatid exchanges was unaffected whereas the induction of RAD 51 foci increased. We propose that pol κ partially protects human cells from the MMR-dependent cytotoxicity of O6-meGua lesions by restoring the integrity of replicated duplexes containing single-stranded gaps generated opposite O6-meGua facilitated by RAD 51 binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号