首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3212篇
  免费   146篇
  2023年   7篇
  2022年   3篇
  2021年   15篇
  2020年   10篇
  2019年   8篇
  2018年   41篇
  2017年   21篇
  2016年   47篇
  2015年   77篇
  2014年   94篇
  2013年   120篇
  2012年   300篇
  2011年   331篇
  2010年   108篇
  2009年   78篇
  2008年   253篇
  2007年   209篇
  2006年   263篇
  2005年   219篇
  2004年   225篇
  2003年   195篇
  2002年   191篇
  2001年   113篇
  2000年   142篇
  1999年   66篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   13篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   14篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   13篇
  1984年   5篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   9篇
  1979年   8篇
  1978年   6篇
  1977年   10篇
  1976年   6篇
  1972年   3篇
  1935年   2篇
排序方式: 共有3358条查询结果,搜索用时 15 毫秒
991.
Lysyl oxidase (LOX) is a copper-containing amine oxidase known to catalyze the covalent cross-linking of fibrillar collagens and elastin at peptidyl lysine residues. In addition, its involvement in cancer, wound healing, cell motility, chemotaxis, and differentiation reflect a remarkable functional diversity of LOX. To investigate novel mechanisms of LOX regulation and function, we performed a yeast two-hybrid screen to identify LOX-interacting proteins. Three overlapping positive clones were identified as C-terminal fragments of fibronectin (FN). Glutathione S-transferase pull-downs and solid phase binding assays confirmed this interaction. LOX binds to the cellular form of FN (cFN) with a dissociation constant (K(d)) of 2.5 nm. This was comparable with our measured K(d) of LOX binding to tropoelastin (1.9 nm) and type I collagen (5.2 nm), but LOX demonstrated a much lower binding affinity for the plasma form of FN (pFN). Immunofluorescent microscopy revealed co-localization of FN and LOX in normal human tissues, where these proteins may interact in vivo. LOX enzymatic activity assays showed that cFN does not seem to be a substrate of LOX. However, cFN can act as a scaffold for enzymatically active 30-kDa LOX. Furthermore, in FN-null mouse embryonic fibroblasts, we observed dramatically decreased proteolytic processing of the 45-kDa LOX proenzyme to the 30-kDa active form, with a corresponding decrease in LOX enzyme activity. Our results suggest that the FN matrix may provide specific microenvironments to regulate LOX catalytic activity.  相似文献   
992.
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.  相似文献   
993.
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants.  相似文献   
994.
995.
Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolytic activity of leaf exudates, indicating that the reaction of sundew leaves depends on the molecular nature of the inducer applied. In situ hybridization of sundew leaves with a Drosera chitinase probe showed chitinase gene expression in different cell types of non-treated leaves, but not in the secretory cells of the glandular heads. Upon induction, chitinase mRNA was also present in the secretory cells of the sundew leaf. The combined results indicate that chitinase is likely to be involved in the decomposition of insect prey by carnivorous plants. This adds a novel role to the already broad function of chitinases in the plant kingdom and may contribute to our understanding of the molecular mechanisms behind the ecological success of carnivorous plants in nutritionally poor environments.  相似文献   
996.
The short-term influence (5-180 min) of 50 microM Al on cell division was investigated in root tips of two Zea mays L. varieties differing in Al-resistance. The incorporation of bromodeoxyuridine into S-phase nuclei was visualized by immunofluorescence staining using confocal laser fluorescence microscopy. In Al-sensitive plants 5 min Al exposure was enough to inhibit cell division in the proximal meristem (250-800 microm from the tip). After 10 or 30 min with Al only, a few S-phase nuclei were found in the cortical initials. By contrast, cell division was stimulated in the distal elongation zone (2.5-3.1 mm). After 180 min the protrusion of an incipient lateral root was observed in this zone. These observations suggest a fast change in cell patterning rather than a general cariotoxic effect after exposure to Al for a short time. No such changes were found in Al-resistant maize. This is the first report showing such fast Al-induced alterations in the number and the position of dividing cells in root tips. The observation that similar changes were induced by a local supply of naphthylphthalamic acid to the distal transition zone suggests that inhibition of auxin transport plays a role in the Al-induced alteration of root cell patterning.  相似文献   
997.
998.
Immunoelectron microscopy analysis of brain tissue sections and rat-specific sandwich ELISA allowed the localization of interleukin-1beta (IL-1beta) immunoreactivity in the mitochondria and cytosol of neocortical tissue preparations from the brain of naive, untreated, rats and rats receiving a single daily injection into one lateral cerebral ventricle (i.c.v.) of bovine serum albumin (BSA; 100 ng/day) for seven consecutive days. Interestingly, seven days i.c.v. treatment with the HIV-1 coat protein gp120 (100 ng/day) enhances IL-1beta immunoreactivity in the cellular fractions studied. Elevation of mitochondrial immunoreactive IL-1beta levels seems to originate from the conversion operated by the interleukin converting enzyme (ICE) of mitochondrial pro-IL-1beta; in fact, IL-1beta increases reported in the ELISA experiments were paralleled by a decrease of the mitochondrial pro-IL-1beta 31-kDa band in conjunction with enhanced expression of the p20 component of activated ICE. In conclusion, the present results demonstrate that gp120-enhanced neocortical expression of IL-1beta originates, at least in part, from in situ cleavage of mitochondrial pro-IL-1beta and suggest that this, together with the central role of the mitochondrion in the expression of programmed cell death, may be important for apoptosis induced by the viral coat protein in the brain of rats.  相似文献   
999.
Chromaffin cell secretion requires cortical F-actin disassembly and it has been suggested that scinderin, a Ca2+ dependent F-actin severing protein, controls cortical actin dynamics. An antisense oligodeoxynucleotide targeting the scinderin gene was used to decrease the expression of the protein and access its role in secretion. Treatment with 2 microM scinderin antisense oligodeoxynucleotide for 4 days produced a significant decrease in scinderin expression and its mRNA levels. The expression of gelsolin, another F-actin severing protein, was not affected. Scinderin decrease was accompanied by concomitant and parallel decreases in depolarization-evoked cortical F-actin disassembly and exocytosis. Similar treatment with a mismatched oligodeoxynucleotide produced no effects. Scinderin antisense oligodeoxynucleotide treatment was also a very effective inhibitor of exocytosis in digitonin-permeabilized cells stimulated with increasing concentrations of Ca2+. This ruled out scinderin antisense interference with stimulation-induced depolarization or Ca2+ channel activation. Scinderin antisense treatment decreased the maximum (B(max)) secretory response to Ca2+ without modifying the affinity (K(m)) of the cation for the exocytotic machinery. Moreover, the antisense treatment did not affect norepinephrine uptake or the expression of dopamine ss-hydroxylase, suggesting that the number and function of chromaffin vesicles was not modified. In addition, scinderin antisense treatment did not alter the expression of proteins involved in vesicle-plasma membrane fusion, such as synaptophysin, synaptotagmin or syntaxin, indicating a lack of effects on the fusion machinery components. These observations strongly suggest that scinderin is a key player in the events involved in the secretory process.  相似文献   
1000.
The morphin-analogue, Durogesic, has robust analgetic effect without repeated side-effects and is suitable for special applications providing it as the first choice for therapy of cancer pain and as an acceptable alternative for CR morphin. Clinical studies not only provided evidences for the pharmacological effectivity of Durogesic but suggested that the quality of life of cancer patients improved significantly as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号