首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3228篇
  免费   148篇
  2023年   7篇
  2022年   3篇
  2021年   15篇
  2020年   10篇
  2019年   8篇
  2018年   41篇
  2017年   21篇
  2016年   47篇
  2015年   78篇
  2014年   94篇
  2013年   121篇
  2012年   299篇
  2011年   333篇
  2010年   108篇
  2009年   78篇
  2008年   253篇
  2007年   209篇
  2006年   264篇
  2005年   221篇
  2004年   226篇
  2003年   195篇
  2002年   189篇
  2001年   115篇
  2000年   143篇
  1999年   66篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   10篇
  1994年   10篇
  1993年   13篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   14篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   15篇
  1984年   5篇
  1983年   8篇
  1982年   10篇
  1981年   9篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   11篇
  1976年   6篇
  1973年   3篇
  1972年   3篇
排序方式: 共有3376条查询结果,搜索用时 31 毫秒
991.
Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible.  相似文献   
992.
993.
The ability of acute environmental or intraperitoneal (i.p.) ethanol to influence morphine antinociceptive effect was studied in mice. In order to induce tolerance to morphine analgesia, mice received daily injections of 10 mg/Kg morphine over a period of 10 days. Mice were divided into three groups: i.p. ethanol (E), environmental ethanol (E*), and control saline (M). During the induction of tolerance these groups were treated identically except on days 1 and 11. On these days, 10 minutes prior to morphine injection, mice received either i.p. ethanol (1g/Kg), environmental ethanol (a bottle of 10% ethanol placed next to the animals cage during the experiments), or an equivalent volume of saline. Analgesia was assessed using a standard hot plate protocol and dose-response cumulative curves for morphine analgesia were obtained on days 1 and 11. On day 1, both the i.p. and environmental administration of ethanol showed similar morphine-potentiation effects [Mean Effective Dose: ED50 (M1)=4.5 mg/kg; ED50 (E1)=2.4 mg/kg; ED50 (E*1)=2.1 mg/kg]. On day 11, control group mice showed a reduction of morphine analgesia at test [ED50 (M11)=14.1 mg/kg]. Mice receiving i.p. and environmental ethanol again showed a leftward shift in dose-response cumulative curves for morphine antinociception with respect to controls [ED50 (E11)=9.1 mg/kg; ED50 (E*11)=4.7 mg/kg]. I.p. ethanol administration at non-antinociceptive doses enhances the morphine antinociception effect similarly in tolerant and non-tolerant (naive) mice. The presence of environmental ethanol can also induce a similar pattern of increase in morphine antinociception effect.  相似文献   
994.
Lysyl oxidase (LOX) is a copper-containing amine oxidase known to catalyze the covalent cross-linking of fibrillar collagens and elastin at peptidyl lysine residues. In addition, its involvement in cancer, wound healing, cell motility, chemotaxis, and differentiation reflect a remarkable functional diversity of LOX. To investigate novel mechanisms of LOX regulation and function, we performed a yeast two-hybrid screen to identify LOX-interacting proteins. Three overlapping positive clones were identified as C-terminal fragments of fibronectin (FN). Glutathione S-transferase pull-downs and solid phase binding assays confirmed this interaction. LOX binds to the cellular form of FN (cFN) with a dissociation constant (K(d)) of 2.5 nm. This was comparable with our measured K(d) of LOX binding to tropoelastin (1.9 nm) and type I collagen (5.2 nm), but LOX demonstrated a much lower binding affinity for the plasma form of FN (pFN). Immunofluorescent microscopy revealed co-localization of FN and LOX in normal human tissues, where these proteins may interact in vivo. LOX enzymatic activity assays showed that cFN does not seem to be a substrate of LOX. However, cFN can act as a scaffold for enzymatically active 30-kDa LOX. Furthermore, in FN-null mouse embryonic fibroblasts, we observed dramatically decreased proteolytic processing of the 45-kDa LOX proenzyme to the 30-kDa active form, with a corresponding decrease in LOX enzyme activity. Our results suggest that the FN matrix may provide specific microenvironments to regulate LOX catalytic activity.  相似文献   
995.
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.  相似文献   
996.
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants.  相似文献   
997.
998.
Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolytic activity of leaf exudates, indicating that the reaction of sundew leaves depends on the molecular nature of the inducer applied. In situ hybridization of sundew leaves with a Drosera chitinase probe showed chitinase gene expression in different cell types of non-treated leaves, but not in the secretory cells of the glandular heads. Upon induction, chitinase mRNA was also present in the secretory cells of the sundew leaf. The combined results indicate that chitinase is likely to be involved in the decomposition of insect prey by carnivorous plants. This adds a novel role to the already broad function of chitinases in the plant kingdom and may contribute to our understanding of the molecular mechanisms behind the ecological success of carnivorous plants in nutritionally poor environments.  相似文献   
999.
The short-term influence (5-180 min) of 50 microM Al on cell division was investigated in root tips of two Zea mays L. varieties differing in Al-resistance. The incorporation of bromodeoxyuridine into S-phase nuclei was visualized by immunofluorescence staining using confocal laser fluorescence microscopy. In Al-sensitive plants 5 min Al exposure was enough to inhibit cell division in the proximal meristem (250-800 microm from the tip). After 10 or 30 min with Al only, a few S-phase nuclei were found in the cortical initials. By contrast, cell division was stimulated in the distal elongation zone (2.5-3.1 mm). After 180 min the protrusion of an incipient lateral root was observed in this zone. These observations suggest a fast change in cell patterning rather than a general cariotoxic effect after exposure to Al for a short time. No such changes were found in Al-resistant maize. This is the first report showing such fast Al-induced alterations in the number and the position of dividing cells in root tips. The observation that similar changes were induced by a local supply of naphthylphthalamic acid to the distal transition zone suggests that inhibition of auxin transport plays a role in the Al-induced alteration of root cell patterning.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号