首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   80篇
  1139篇
  2024年   1篇
  2023年   9篇
  2022年   21篇
  2021年   26篇
  2020年   19篇
  2019年   27篇
  2018年   44篇
  2017年   34篇
  2016年   55篇
  2015年   65篇
  2014年   84篇
  2013年   77篇
  2012年   120篇
  2011年   87篇
  2010年   59篇
  2009年   45篇
  2008年   76篇
  2007年   49篇
  2006年   47篇
  2005年   42篇
  2004年   50篇
  2003年   39篇
  2002年   30篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1974年   1篇
排序方式: 共有1139条查询结果,搜索用时 15 毫秒
31.

Background

Weight loss is common in people with Alzheimer’s disease (AD) and it could be a marker of impending AD in Mild Cognitive Impairment (MCI) and improve prognostic accuracy, if accelerated progression to AD would be shown.

Aims

To assess weight loss as a predictor of dementia and AD in MCI.

Methods

One hundred twenty-five subjects with MCI (age 73.8 ± 7.1 years) were followed for an average of 4 years. Two weight measurements were carried out at a minimum time interval of one year. Dementia was defined according to DSM-IV criteria and AD according to NINCDS-ADRDA criteria. Weight loss was defined as a ≥4% decrease in baseline weight.

Results

Fifty-three (42.4%) MCI progressed to dementia, which was of the AD-type in half of the cases. Weight loss was associated with a 3.4-fold increased risk of dementia (95% CI = 1.5–6.9) and a 3.2-fold increased risk of AD (95% CI = 1.4–8.3). In terms of years lived without disease, weight loss was associated to a 2.3 and 2.5 years earlier onset of dementia and AD.

Conclusions

Accelerated progression towards dementia and AD is expected when weight loss is observed in MCI patients. Weight should be closely monitored in elderly with mild cognitive impairment.  相似文献   
32.
33.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   
34.
Changes in the soil microbial community structure can lead to dramatic changes in the soil ecosystem. Temperature, which is projected to increase with climate change, is commonly assumed to affect microbial communities, but its effects on agricultural soils are not fully understood. We collected soil samples from six vineyards characterised by a difference of about 2 °C in daily soil temperature over the year and simulated in a microcosm experiment different temperature regimes over a period of 1 year: seasonal fluctuations in soil temperature based on the average daily soil temperature measured in the field; soil temperature warming (2 °C above the normal seasonal temperatures); and constant temperatures normally registered in these temperate soils in winter (3 °C) and in summer (20 °C). Changes in the soil bacterial and fungal community structures were analysed by automated ribosomal intergenic spacer analysis (ARISA). We did not find any effect of warming on soil bacterial and fungal communities, while stable temperatures affected the fungal more than the bacterial communities, although this effect was soil dependent. The soil bacterial community exhibited soil-dependent seasonal fluctuations, while the fungal community was mainly stable. Each soil harbours different microbial communities that respond differently to seasonal temperature fluctuations; therefore, any generalization regarding the effect of climate change on soil communities should be made carefully.  相似文献   
35.
α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4 h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H2O2-/docetaxel-induced cytotoxicity.  相似文献   
36.
37.
Alzheimer’s disease (AD) is a complex disease resulting in neurodegeneration and cognitive impairment. Investigations on environmental factors implicated in AD are scarce and the etiology of the disease remains up to now obscure. The disease’s pathogenesis may be multi-factorial and different etiological factors may converge during aging and induce an activation of brain microglia and macrophages. This microglia priming will result in chronic neuro-inflammation under chronic antigen activation. Infective agents may prime and drive iper-activation of microglia and be partially responsible of the induction of brain inflammation and decline of cognitive performances. Age-associated immune dis-functions induced by chronic sub-clinical infections appear to substantially contribute to the appearance of neuro-inflammation in the elderly. Individual predisposition to less efficient immune responses is another relevant factor contributing to impaired regulation of inflammatory responses and accelerated cognitive decline.Life-long virus infection may play a pivotal role in activating peripheral and central inflammatory responses and in turn contributing to increased cognitive impairment in preclinical and clinical AD.  相似文献   
38.
We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities.  相似文献   
39.
40.
DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3′ single-stranded DNA (ssDNA) generation by 5′ DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2Δ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号