首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   79篇
  2024年   1篇
  2023年   9篇
  2022年   21篇
  2021年   26篇
  2020年   19篇
  2019年   27篇
  2018年   44篇
  2017年   34篇
  2016年   55篇
  2015年   65篇
  2014年   84篇
  2013年   77篇
  2012年   120篇
  2011年   87篇
  2010年   59篇
  2009年   45篇
  2008年   76篇
  2007年   49篇
  2006年   48篇
  2005年   42篇
  2004年   50篇
  2003年   39篇
  2002年   30篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1974年   1篇
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
991.
Studies by Bruce Ransom and colleagues have made a major contribution to show that white matter is susceptible to ischemia/hypoxia. White matter contains axons and the glia that support them, notably myelinating oligodendrocytes, which are highly vulnerable to ischemic-hypoxic damage. Previous studies have shown that metabotropic GluRs (mGluRs) are cytoprotective for oligodendrocyte precursor cells and immature oligodendrocytes, but their potential role in adult white matter was unresolved. Here, we report that group 1 mGluR1/5 and group 2 mGluR3 subunits are expressed in optic nerves from mice aged postnatal day (P)8–12 and P30–35. We demonstrate that activation of group 1 mGluR protects oligodendrocytes against oxygen-glucose deprivation (OGD) in developing and young adult optic nerves. In contrast, group 2 mGluR are shown to be protective for oligodendrocytes against OGD in postnatal but not young adult optic nerves. The cytoprotective effect of group 1 mGluR requires activation of PKC, whilst group 2 mGluR are dependent on negatively regulating adenylyl cyclase and cAMP. Our results identify a role for mGluR in limiting injury of oligodendrocytes in developing and young adult white matter, which may be useful for protecting oligodendrocytes in neuropathologies involving excitoxicity and ischemia/hypoxia.  相似文献   
992.
993.
The implementation of conservation actions requires a reliable assessment of presence and/or abundance of targeted species. This is particularly difficult for rare and elusive species. In this study the use of bottle traps and the effects of two potential baits in relation to height in the trees were tested to detect presence and assess abundance of stag beetles (Lucanidae) and flower chafers (Scarabaeidae, Cetoniinae), an important component of forest biodiversity. The study was carried out in a flood-plain forest of northern Italy. Forty-eight handcrafted traps were assigned to two height categories (1.5–2 m and 10–20 m) and three kinds of bait: (i) red wine, white wine and sugar, (ii) red wine, beer and mashed banana, (iii) no bait, as control. Fieldwork lasted 8 weeks, with 32 surveys, from May to July. Overall, we recorded 399 captures of the following species: Dorcus parallelipipedus, Lucanus cervus, Cetonia aurata, Protaetia speciosissima, P.affinis, P. morio and P. cuprea. Traps baited with red wine, white wine and sugar showed the highest detection probabilities for all the species. A clear preference for the canopy layer (traps between 10 and 20 m high) was shown by all species except for D. parallelipipedus which was mostly captured between 1.5 and 2 m of height. The study period was long enough to improve ecological knowledge on species phenology, but not enough to include the whole phenology for all of them. The method allowed the assessment of population size only for flower chafers as the number of stag beetles captures was too low.  相似文献   
994.
We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). This suggests that the G1-S transition of AH130 cells depends on a respiration-linked step of DNA synthesis related to folate metabolism. In the study reported here, we characterized the effects of methotrexate (MTX), an inhibitor of dihydofolate-reductase, on the G1-S transition of hepatoma cells, in the absence or the presence of exogenously added F, dihydrofolate (FH2) or tetrahydrofolate (FH4). MTX, at 1 μM or higher concentrations, inhibited G1-S transition. This inhibition was completely removed by exogenous folates. Surprisingly, 10 nM MTX stimulated G1-S transition. The addition of F, but not FH2 or FH4, significantly increased this effect. Furthermore, 10 nM MTX removed the block of the G1-S transition operated by antimycin A or pyruvate, an effect which was enhanced in the presence of F. Finally, the stimulatory effect of 10 nM MTX was inhibited in the presence of serine. Our findings indicated that, under certain conditions, MTX may stimulate, rather than inhibiting, the cycling of cancer cells exhibiting a stem cell-like phenotype, such as AH130 cells. This may impact the therapeutic use of MTX and of folates as supportive care.  相似文献   
995.
Since NO production by NOS-2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS-2 expression should contribute to developing effective therapeutics. The expression and activation of NOS-2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL-1beta, TNF-alpha, and IFN-gamma, are driven by two separable mechanisms. NOS-2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK-dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS-2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium-sensing receptors (CASRs) with NPS 89636. However, NOS-2 activation is inhibited by NPS 89626 during the MEK/ERK-dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS-2 expression and the subsequent BH4-dependent NOS-2-activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS-2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO-induced damage and death of human neurons.  相似文献   
996.
Antisense technology was successfully employed to selectively reduce the expression of Bcl-2 in U937 cells, while leaving their redox status intact. These cells displayed enhanced sensitivity to mitochondrial permeability transition (MPT)-dependent apoptosis induced by arsenite and underwent a rapid, MPT-dependent necrotic response after exposure to otherwise nontoxic concentrations of peroxynitrite. Several lines of evidence consistently indicate that these low concentrations of peroxynitrite nevertheless commit cells to MPT, which is, however, prevented by a survival signaling in which arachidonic acid, protein kinase C (PKC), and Bcl-2 are sequentially involved. Bcl-2, however, was not the direct target of PKC but most likely Bad, a protein involved in the regulation of Bcl-2 activity via heterodimerization. Further studies revealed that Bcl-2 does not afford protection in cells challenged with intrinsically toxic concentrations of peroxynitrite. This was due to depletion of GSH, an event leading to loss of the anti-MPT function of Bcl-2. Collectively, these results demonstrate a role of Bcl-2 in monocyte survival signaling preventing MPT-dependent necrosis induced by peroxynitrite, and provide an explanation for the reported observation that Bcl-2 fails to prevent necrosis mediated by intrinsically toxic levels of peroxynitrite.  相似文献   
997.
With the aim of identifying the immunophenotypic profile of B-cell chronic lymphocytic leukemia (B-CLL) subsets with different prognosis, we investigated by flow cytometry the expression of 36 surface antigens in 123 cases, all with survivals. By analyzing results with unsupervised (hierarchical and K-means clustering) algorithms, three distinct immunophenotypic groups (I, II, and III) were identified, group I (51/123) with longer survivals, as compared to the group II (36/123) and III (36/123). The immunophenotypic signatures of these groups, as determined by applying the nearest Shrunken centroids method as class predictor, were characterized by the coordinated and differential expression of 12 surface markers, that is, group I: above-average expression of CD62L, CD54, CD49c, and CD25, below-average expression of CD38; group II: above-average expression of CD38, CD49d, CD29, and CD49e; and group III: below-average expression of the above markers, overexpression of CD23, CD20, SmIg, and CD79b. As opposed to groups II-III, group I B-CLLs lacked expression of ZAP-70 and activation-induced cytidine deaminase in the majority of cases, while more frequently had mutated IgV(H) genes and IgV(H) mutations consistent with antigen-driven selection. Our findings contribute to improve the immunophenotypical identification of disease subsets with different prognosis and suggest a set of surface antigens to be employed as prognosticators in routine diagnostic/prognostic procedures.  相似文献   
998.
1. Kynurenic (KYNA) and quinolinic (QUIN) acids are neuroactive tryptophan metabolites formed along the kynurenine pathway: the first is considered a non-competitive antagonist and the second an agonist of glutamate receptors of NMDA type. The affinity of these compounds for glutamate receptors is, however, relatively low and does not explain KYNA neuroprotective actions in models of post-ischemic brain damage. 2. We evaluated KYNA effects on the release of fibroblast growth factor (FGF)-1, a potent neurotrophic cytokine. Because KYNA exhibits a neuroprotective profile in vitro and in vivo, we anticipated that it could function as an autocrine/paracrine inducer of FGF-1 release. Studies were performed in several models of FGF-1 secretion (FGF-1 transfected NIH 3T3 cells exposed to heat shock, A375 melanoma cells exposed to serum starvation, growth factor deprived human endothelial cells). To our surprise, KYNA, at low concentration, inhibited FGF-1 release in all cellular models. QUIN, a compound having opposite effects on glutamate receptors, also reduced this release, but its potency was significantly lower than that of KYNA. 3. KYNA and QUIN also displayed a major stimulatory effect on the proliferation rate of mouse microglia and human glioblastoma cells, in vitro. 4. Our data suggest that minor changes of local KYNA concentration may modulate FGF-1 release, cell proliferation, and ultimately tissue damage in different pathological conditions.  相似文献   
999.
Voas MG  Rebay I 《Genetics》2003,165(4):1993-2006
The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号