首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   80篇
  1140篇
  2024年   1篇
  2023年   9篇
  2022年   21篇
  2021年   26篇
  2020年   19篇
  2019年   27篇
  2018年   44篇
  2017年   34篇
  2016年   55篇
  2015年   65篇
  2014年   84篇
  2013年   77篇
  2012年   120篇
  2011年   87篇
  2010年   59篇
  2009年   45篇
  2008年   76篇
  2007年   49篇
  2006年   48篇
  2005年   42篇
  2004年   50篇
  2003年   39篇
  2002年   30篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1974年   1篇
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
11.
By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation.  相似文献   
12.
We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose.  相似文献   
13.
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.  相似文献   
14.
15.
Polybrominated diphenyl ethers (PBDEs) and cytochrome P450 enzyme activities were investigated in European eels (Anguilla anguilla) collected from seven sites in a coastal lagoon in the north-western Mediterranean Sea, Orbetello lagoon (Italy). Twelve PBDE congeners were measured in muscle and two CYP1A enzyme activities, 7-ethoxyresorufin-O-deethylase (EROD) and benzo(a)pyrene monooxygenase (BP(a)PMO), were investigated in liver microsomal fraction in order to obtain insights into the health of the lagoon environment. PBDE muscle levels were low and the most abundant congeners were 2,2',4,4'-tetrabromodiphenylether (BDE-47), 2,2',4,4',5,5'-hexaBDE (BDE-153) and 2,2',4,5'-tetraBDE (BDE-49). EROD and B(a)PMO activities were also low and no differences were observed between eels from different sites. Multivariate analysis (PCA) did not indicate correlations between PBDEs and either P450 activities.  相似文献   
16.
The aim of this study was to investigate the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in postmortem human prefrontal cortex, striatum and hippocampus. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by the pharmacological characterization, where possible, and by autoradiographic, immunohistochemical and immunofluorescence evaluations. A specific and saturable [(125)I]SB-258585 binding was detected in striatum only, with a pharmacological characterization consistent with that of a 5-HT(6) receptor. The autoradiography showed the presence of a specific [(125)I]SB-258585 binding distributed homogeneously in caudate, putamen and accumbens. The immunohistochemistry, carried out in the striatum only, coupled with the immunofluorescence with glial fibrillary acidic protein (GFAP) and parvalbumin (PV) showed the co-localization of 5-HT(6) receptor with PV, while indicating that this receptor subtype was expressed in neurons and not in astrocytes. Taken together, the present findings showed the presence of a higher density of 5-HT(6) receptors, as labeled by [(125)I]SB-258585, in striatum than in hippocampus and prefrontal cortex, and specifically within the neuronal body. In addition, they would suggest that striatum is one of the major potential CNS targets linked to 5-HT(6) receptor modulation.  相似文献   
17.
For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.  相似文献   
18.
Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, suggesting that niche blood vessels regulate NSC differentiation at least in part by providing oxygen. Consistent herewith, hypoxia‐inducible factor (HIF)‐1α levels controlled the switch of NSC expansion to differentiation. Finally, we provide evidence that high glycolytic activity of NSCs is required to prevent their precocious differentiation in vivo. Thus, blood vessel function is required for efficient NSC differentiation in the developing cerebral cortex by providing oxygen and possibly regulating NSC metabolism.  相似文献   
19.
TNF-like cytokine (TL1A) is a newly identified member of the TNF superfamily of ligands that is important for T cell costimulation and Th1 polarization. However, despite increasing information about its functions, very little is known about expression of TL1A in normal or pathological states. In this study, we report that mononuclear phagocytes appear to be a major source of TL1A in rheumatoid arthritis (RA), as revealed by their strong TL1A expression in either synovial fluids or synovial tissue of rheumatoid factor (RF)-seropositive RA patients, but not RF-/RA patients. Accordingly, in vitro experiments revealed that human monocytes express and release significant amounts of soluble TL1A when stimulated with insoluble immune complexes (IC), polyethylene glycol precipitates from the serum of RF+/RA patients, or with insoluble ICs purified from RA synovial fluids. Monocyte-derived soluble TL1A was biologically active as determined by its capacity to induce apoptosis of the human erythroleukemic cell line TF-1, as well as to cooperate with IL-12 and IL-18 in inducing the production of IFN-gamma by CD4(+) T cells. Because RA is a chronic inflammatory disease with autoimmune etiology, in which ICs, autoantibodies (including RF), and various cytokines contribute to its pathology, our data suggest that TL1A could be involved in its pathogenesis and contribute to the severity of RA disease that is typical of RF+/RA patients.  相似文献   
20.
Novel C-seco-taxoids were synthesized from 10-deacetylbaccatin III and their potencies evaluated against drug-sensitive and drug-resistant cancer cell lines. The drug-resistant cell lines include ovarian cancer cell lines resistant to cisplatin, topotecan, adriamycin and paclitaxel overexpressing class III β-tubulin, A2780TC1 and A2780TC3. The last two cell lines were selected through chronic exposure of A2780wt to paclitaxel and Pgp blocker cyclosporine. All novel C-seco-taxoids exhibited remarkable potency against A2780TC1 and A2780TC3 cell lines, and no cross resistance to cisplatin- and topotecan-resistant cell lines, A2780CIS and A2780TOP. Four of those C-seco-taxoids exhibit much higher activities than IDN5390 against paclitaxel-resistant cell lines, A2780ADR, A2780TC1 and A2780TC3. SB-CST-10202 possesses the best all-round high potencies across different drug-resistant cell lines. Molecular modeling studies, including molecular dynamics simulations, on the drug-protein complexes of class I and III β-tubulins were performed to identify possible cause of the remarkable potency of these C-seco-taxoids against paclitaxel-resistant cell lines overexpressing class III β-tubulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号