首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   42篇
  654篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   16篇
  2014年   25篇
  2013年   25篇
  2012年   39篇
  2011年   39篇
  2010年   29篇
  2009年   26篇
  2008年   27篇
  2007年   25篇
  2006年   27篇
  2005年   24篇
  2004年   19篇
  2003年   24篇
  2002年   27篇
  2001年   7篇
  2000年   10篇
  1999年   15篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   12篇
  1989年   12篇
  1987年   9篇
  1986年   8篇
  1985年   4篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   6篇
  1980年   6篇
  1978年   12篇
  1977年   4篇
  1976年   3篇
  1975年   8篇
  1974年   11篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
排序方式: 共有654条查询结果,搜索用时 15 毫秒
21.
A major goal of modern evolutionary biology is to understand the causes and consequences of phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes in response to variable environments. While ecological and quantitative genetic studies have evaluated models of the evolution of adaptive plasticity, some long-standing questions about plasticity require more mechanistic approaches. Here, we address two of those questions: does plasticity facilitate adaptive evolution? And do physiological costs place limits on plasticity? We examine these questions by comparing genetically and plastically regulated behavioural variation in sailfin mollies (Poecilia latipinna), which exhibit striking variation in plasticity for male mating behaviour. In this species, some genotypes respond plastically to a change in the social environment by switching between primarily courting and primarily sneaking behaviour. In contrast, other genotypes have fixed mating strategies (either courting or sneaking) and do not display plasticity. We found that genetic and plastic variation in behaviour were accompanied by partially, but not completely overlapping changes in brain gene expression, in partial support of models that predict that plasticity can facilitate adaptive evolution. We also found that behavioural plasticity was accompanied by broader and more robust changes in brain gene expression, suggesting a substantial physiological cost to plasticity. We also observed that sneaking behaviour, but not courting, was associated with upregulation of genes involved in learning and memory, suggesting that sneaking is more cognitively demanding than courtship.  相似文献   
22.

Objective

Offering calories on restaurant websites might be particularly important for consumer meal planning, but the availability of and ease of accessing this information are unknown.

Methods

We assessed websites for the top 100 U.S. chain restaurants to determine the availability of and ease of access to calorie information as well as website design characteristics. We also examined potential predictors of calorie availability and ease of access.

Results

Eighty-two percent of restaurants provided calorie information on their websites; 25% presented calories on a mobile-formatted website. On average, calories could be accessed in 2.35±0.99 clicks. About half of sites (51.2%) linked to calorie information via the homepage. Fewer than half had a separate section identifying healthful options (46.3%), or utilized interactive meal planning tools (35.4%). Quick service/fast casual, larger restaurants, and those with less expensive entrées and lower revenue were more likely to make calorie information available. There were no predictors of ease of access.

Conclusion

Calorie information is both available and largely accessible on the websites of America’s leading restaurants. It is unclear whether consumer behavior is affected by the variability in the presentation of calorie information.  相似文献   
23.
The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97–AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97’s role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin.  相似文献   
24.
25.
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield.  相似文献   
26.
Receptor guanylyl cyclases respond to ligand stimulation by increasing intracellular cGMP, thereby initiating a variety of cell-signaling pathways. Furthermore, these proteins are differentially localized at the apical and basolateral membranes of epithelial cells. We have identified a region of 11 amino acids in the cytosolic COOH terminus of guanylyl cyclase C (GCC) required for normal apical localization in Madin-Darby canine kidney (MDCK) cells. These amino acids share no significant sequence homology with previously identified cytosolic apical sorting determinants. However, these amino acids are highly conserved and are sufficient to confer apical polarity to the interleukin-2 receptor alpha-chain (Tac). Additionally, we find two molecular weight species of GCC in lysates prepared from MDCK cells over-expressing GCC but observe only the fully mature species on the cell surface. Using pulse-chase analysis in polarized MDCK cells, we followed the generation of this mature species over time finding it to be detectable only at the apical cell surface. These data support the hypothesis that selective apical sorting can be determined using short, cytosolic amino acid motifs and argue for the existence of apical sorting machinery comparable with the machinery identified for basolateral protein traffic.  相似文献   
27.
Experimental angiogenesis of arterial vasa vasorum   总被引:1,自引:0,他引:1  
  相似文献   
28.
The entire microbial plankton community was quantified on a weekly basis April through June of 2000 in Quantuck Bay as part of an ongoing study to identify factors contributing to the initiation of blooms of Aureococcus anophagefferens (brown tide) in Long Island, NY bays. We used flow cytometry, imaging cytometry, fluorescent antibody cell counts, and traditional visual cell counting to quantify the picophytoplankton, heterotrophic bacteria, nanophytoplankton, heterotrophic protists, and microplankton prior to, and during the initiation of a brown tide bloom. Cells passing through a 5 μm mesh dominated the total chlorophyll concentration (>80%) for most of the spring study period. The A. anophagefferens bloom occurred in the context of a larger pico/nanophytoplankton bloom where A. anophagefferens accounted for only 30% of the total cell count when it was at its maximum concentration of 4.8 × 105 mL−1. Levels of dissolved organic nitrogen were enriched during the bloom peak relative to pre-bloom levels and heterotrophic bacteria also bloomed, reaching abundances over 107 mL−1. A trophic cascade within the heterotrophic protist community may have occurred, coinciding with the A. anophagefferens bloom. Before the onset of the bloom, larger grazers increased in abundance, while the next smaller trophic level of grazers were diminished. These smaller grazers were the likely water column predators of A. anophagefferens, and the brown tide bloom initiated when they were depleted. These results suggest that this bloom initiated due to interactions with other pico/nano algae and release from grazing pressure through a trophic cascade.  相似文献   
29.
Although it is one of the most commonly occurring craniofacial congenital disabilities, craniosynostosis (the premature fusion of cranial sutures) is nearly impossible to prevent because the molecular mechanisms that regulate the process of cranial suture fusion remain largely unknown. Recent studies have implicated the dura mater in determining the fate of the overlying cranial suture; however, the molecular biology within the suture itself has not been sufficiently investigated. In the murine model of cranial suture fusion, the posterior frontal suture is programmed to begin fusing by postnatal day 12 in rats (day 25 in mice), reliably completing bony union by postnatal day 22 (day 45 in mice). In contrast, the sagittal suture remains patent throughout the life of the animal. Using this model, this study sought to examine for the first time what differences in gene expression--if any--exist between the two sutures with opposite fates. For each series of experiments, 35 to 40 posterior frontal and sagittal suture complexes were isolated from 6-day-old Sprague-Dawley rat pups. Suture-derived cell cultures were established, and ribonuicleic acid was derived from snap-frozen, isolated suture tissue. Results demonstrated that molecular differences between the posterior frontal and sagittal suture complexes were readily identified in vivo, although these distinctions were lost once the cells comprising the suture complex were cultured in vitro. Hypothetically, this change in gene expression resulted from the loss of the influence of the underlying dura mater. Significant differences in the expression of genes encoding extracellular matrix proteins existed in vivo between the posterior frontal and sagittal sutures. However, the production of the critical, regulatory cytokine transforming growth factor beta-1 was equal between the two suture complexes, lending further support to the hypothesis that dura mater regulates the fate of the overlying cranial suture.  相似文献   
30.
K(+) efflux through voltage-gated K(+) (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+) influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin-binding peptides inhibits Ca(2+) -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号