首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1392篇
  免费   193篇
  2021年   11篇
  2016年   18篇
  2015年   44篇
  2014年   32篇
  2013年   48篇
  2012年   76篇
  2011年   73篇
  2010年   40篇
  2009年   29篇
  2008年   61篇
  2007年   68篇
  2006年   59篇
  2005年   56篇
  2004年   63篇
  2003年   54篇
  2002年   46篇
  2001年   32篇
  2000年   37篇
  1999年   23篇
  1998年   29篇
  1997年   18篇
  1996年   21篇
  1995年   13篇
  1994年   19篇
  1993年   18篇
  1992年   20篇
  1991年   16篇
  1990年   16篇
  1989年   23篇
  1988年   26篇
  1987年   22篇
  1986年   31篇
  1985年   31篇
  1984年   31篇
  1983年   28篇
  1982年   27篇
  1981年   25篇
  1980年   24篇
  1979年   30篇
  1978年   34篇
  1977年   15篇
  1976年   22篇
  1975年   24篇
  1974年   13篇
  1973年   11篇
  1972年   16篇
  1971年   10篇
  1970年   11篇
  1969年   10篇
  1968年   12篇
排序方式: 共有1585条查询结果,搜索用时 31 毫秒
11.
Cultured endothelial cells take up 15-hydroxyeicosatetraenoic acid (15-HETE), a lipoxygenase product formed from arachidonic acid, and incorporate it into cellular phospholipids and glycerides. Uptake can occur from either the apical or basolateral surface. A substantial amount of the 15-HETE incorporated into phospholipids is present in the inositol phosphoglycerides. 15-HETE is converted into several metabolic products that accumulate in teh extracellular fluid; this conversion does not require stimulation by agonists. The main product has been identified as 11-hydroxyhexadecatrienoic acid [16:3(11-OH)], a metabolite of 15-HETE that has not been described previously. Formation of 16:3(11-OH) decreases when 4-pentenoic acid is present, suggesting that it is produced by beta-oxidation. The endothelial cells can take up 16:3(11-OH) only 25% as effectively as 15-HETE, and 16:3(11-OH) is almost entirely excluded from the inositol phosphoglycerides. These results suggest that the endothelial cells can incorporate 15-HETE when it is released into their environment. Through partial oxidation, the endothelium can process 15-HETE to a novel metabolite that is less effectively taken up and, in particular, is excluded from the inositol phosphoglycerides.  相似文献   
12.
The effect of physiological concentrations of ethanolamine on choline uptake and incorporation into phosphatidylcholine was investigated in human Y79 retinoblastoma cells, a multipotential, undifferentiated retinal cell line that has retained many neural characteristics. These cells have a high-affinity uptake system for choline, and the majority of the choline taken up was incorporated into phosphatidylcholine via the CDP-choline pathway. The presence of extracellular ethanolamine significantly decreased high-affinity choline uptake and, subsequently, the amount of choline incorporated into phosphatidylcholine. When 100 mumol/L ethanolamine was added, there was a decrease of about 8% in the phosphatidylcholine content. Ethanolamine had no effect on choline incorporation into phosphatidylcholine, however, once choline was taken up by the cell. The K'M and V'max for high-affinity choline uptake was increased from 0.93 to 9.74 microM and 19.60 to 79.25 pmol/min per mg protein, respectively, by the presence of 25 mumol/L ethanolamine. In contrast, 25 mumol/L choline had no effect on the kinetic parameters of high-affinity ethanolamine uptake. Therefore, the reduction in high-affinity choline transport by ethanolamine apparently is not simply due to competitive inhibition. 2,2-Dimethylethanolamine and 2-methylethanolamine both reduced choline uptake to a greater extent than ethanolamine. However, because these compounds exist at much lower concentrations than ethanolamine, they probably have little physiological influence. These results suggest that changes in ethanolamine concentration within the physiologic range can regulate the synthesis and content of phosphatidylcholine in a neural cell by influencing the uptake of choline.  相似文献   
13.
Development and Characterization of Pantothenic Acid Transport in Brain   总被引:1,自引:1,他引:0  
In vitro, the transport of [3H]pantothenic acid into and from rabbit brain slices was studied. In newborn rabbits and throughout development, forebrain and cerebellar slices were able to accumulate and phosphorylate [3H]pantothenic acid comparably to slices from adults. The accumulation and phosphorylation of [3H]pantothenic acid by adult forebrain slices were not decreased by substitution of LiCl for NaCl in the artificial CSF or by addition of short-chain fuels (e.g., 5 mM pyruvate or acetoacetate) to the medium. However, probenecid and ouabain (both 1 mM) and medium-chain fatty acids (e.g., 0.1 mM octanoate, nonanoate, and decanoate) profoundly inhibited [3H]pantothenic acid accumulation by forebrain slices but not intracellular phosphorylation and conversion to [3H]CoA. There in vitro results suggest that brain slices accumulate pantothenic acid by a saturable system (probably facilitated diffusion) that is sensitive to inhibition by probenecid and medium-chain fatty acids.  相似文献   
14.
We have characterized the heterogeneity occurring at the junction of the long (L) and short (S) segments and at the termini of the strain AD169 human cytomegalovirus (HCMV) genome by restriction endonuclease mapping and nucleotide sequence analyses. The HCMV a sequence was identified by its position at both termini and inverted orientation at the L-S junction. Heterogeneity at both termini and the L-S junction was generated by the presence of fused and tandem a sequences. Some S termini lacked an a sequence. In addition, near the L terminus and at the L-S junction there were a variable number of 217-base-pair (bp) XhoI fragments arranged in tandem. The 217-bp fragments consisted of a portion of the a and adjacent b sequences (in the L-segment repeat) bounded by the same direct repeats (DR1) found at the boundaries of the a sequence. A model for the generation of these heterogeneous fragments is presented. We also determined the sequence of seven cloned terminal fragments, five from the L terminus and two from the S terminus. All L termini contained identical terminal sequences ending with base 32 of a 33-bp DR1. The S termini differed from each other and from the L-segment termini. One S terminus lacked an a sequence and terminated within S-segment repeat (c) sequences. The second S terminus contained an a sequence and terminated with bases 20 to 33 of a 33-bp DR1. A comparison of the cloned L and S terminal sequences with cloned L-S junction sequences suggested that the termini contained 3' single base extensions which were removed during the cloning. We also show that the herpesvirus conserved sequence is in a similar position relative to the termini of HCMV and several other herpesviruses, thus adding further support for the role of the sequence in the maturation of viral DNA.  相似文献   
15.
Leukotriene C4 Transport and Metabolism in the Central Nervous System   总被引:1,自引:0,他引:1  
The transport and metabolism of radiolabeled leukotriene (LT) C4 in the CNS were investigated after intraventricular injection. Under thiopental (Pentothal) anesthesia, New Zealand white rabbits were injected intracerebroventricularly with 0.2 ml of artificial CSF containing 2.5 microCi of [3H]LTC4 (36 Ci/mmol), 0.3 microCi of [14C]mannitol, and, in some cases, 0.9 mg of probenecid, 1.8 mg of cysteine, 1.4 micrograms of unlabeled LTC4, or 2 mg of tolazoline HCl. After 2 h, the conscious rabbits were killed, and the quantity and nature of the 3H and 14C were determined in CSF, choroid plexus, and brain. The [3H]LTC4 recovered in CSF and brain was not extensively metabolized, as greater than 70% of the 3H remained [3H]LTC4, although some spontaneous conversion to 11-trans-[3H]LTC4 occurred. Oxidized forms of [3H]LTC4, [3H]LTD4, and [3H]LTE4 did not exceed 18% in CSF and brain. After intraventricular injection of [3H]LTC4, 3H was transferred from the CSF to blood by a probenecid-sensitive, but tolazoline-insensitive, transport system in the CNS much more rapidly than mannitol. Cysteine decreased the retention of [3H]LTC4 in brain. These results are consistent with previous in vitro observations that [3H]LTC4 is transferred from CSF into blood by an efficient transport system for LTC4 in choroid plexus.  相似文献   
16.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   
17.
Arginase activity in red blood cells (RBC) of various mammalian species including man was determined. In nonprimate species, the activity generally fell below the level of detectability of the assay: less than 1.0 mumol urea/g hemoglobin per hr. Activities in higher nonhuman primates were equal to or of the same order of magnitude as those in man (approximately 950 mumol/g hemoglobin per hr). RBC arginase deficiency with normal liver arginase activity has been shown to segregate as an autosomal codominant trait in Macaca fascicularis established and bred in captivity. This study confirms the presence of this polymorphism in wild populations trapped in several geographic areas and demonstrates the absence of immunologically cross-reactive material in the RBC of RBC arginase-deficient animals. These data when taken together suggest that the expression of arginase in RBC is the result of a regulatory alteration, has evolved under positive selective pressure, and is not an example of the vestigial persistence of an arcane function. The expression of arginase in the RBC results in a marked drop in the arginine content of these cells.  相似文献   
18.
Phospholipid synthesis was investigated in human Y79 retinoblastoma cells, a cultured cell line of retinal origin that retains many neural characteristics. Ethanolamine is taken up by Y79 cells through a high-affinity transport system and is utilized to synthesize ethanolamine and choline phosphoglycerides. High-affinity ethanolamine uptake has a K'm of 40.6 microM and a V'max of 1.06 nmol/min/mg protein, and the process is Na+ dependent. Choline is the only compound tested that reduced ethanolamine uptake, and very high choline concentrations were required to produce this effect. The cells incorporate ethanolamine into phosphatidylethanolamine and ethanolamine plasmalogen at equivalent rates, and the rates of catabolism of these phospholipids are similar. Only a small quantity of ethanolamine is incorporated into phosphatidylcholine, but the amount is not reduced by the addition of choline. Serine is incorporated into phosphatidylserine, which then is converted to phosphatidylethanolamine. Ethanolamine reduces but does not abolish this conversion. Unlike ethanolamine, only a small amount of serine is incorporated into ethanolamine plasmalogen. It is possible that the ethanolamine high-affinity uptake system is necessary to provide a neural cell with enough free ethanolamine for ethanolamine plasmalogen synthesis.  相似文献   
19.
Uridine Transport and Metabolism in the Central Nervous System   总被引:4,自引:2,他引:2  
Myelin and myelin-containing (P3) fractions were prepared from human white matter by discontinuous sucrose gradient centrifugation. The myelin isolated from each of the fractions of different densities was morphologically and biochemically distinct. Light myelin fractions consisted of compact, multilamellar myelin, whereas the denser fractions consisted predominantly of loose myelin with fewer lamellae. The amounts of both basic protein and lipophilin (proteolipid protein) were reduced in the denser fractions. In contrast, the high-molecular-weight components were elevated in the dense fractions. The lipid composition was similar in all the fractions studied. Analysis of basic protein by gel electrophoresis at pH 10.6 revealed differences in basic protein microheterogeneity among the fractions. The light myelin fraction was enriched in the more positively charged basic protein components (components 1, 2, and 3), whereas these components were reduced in the denser fractions. Myelin in the dense fractions was enriched in the more modified forms of basic protein (components 6, 7, and 8). The pattern of microheterogeneity was different for basic protein isolated from myelins of a 2-year-old and an adult brain; the former showed fewer components and mainly the most cationic species. On the other hand, the pattern of microheterogeneity of basic protein isolated from the different density gradient fractions was similar for both ages.  相似文献   
20.
Summary In this work we have investigated the decolorization of the polymeric dye Poly-B411 by several fungi. Only fungi with known lignin degrading ability were able to decolorize the dye. Pleurotus ostreatus sp. florida decolorized the dye both in solid and liquid media. Decolorizing ability developed in the absence of the dye but only when the fungus had been previously cultivated on lignin containing substrates.The work was supported by a grant from the Charles Wolfson Trust  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号