首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7481篇
  免费   529篇
  国内免费   3篇
  2023年   25篇
  2022年   48篇
  2021年   125篇
  2020年   89篇
  2019年   123篇
  2018年   201篇
  2017年   145篇
  2016年   280篇
  2015年   411篇
  2014年   458篇
  2013年   498篇
  2012年   661篇
  2011年   626篇
  2010年   407篇
  2009年   385篇
  2008年   504篇
  2007年   452篇
  2006年   417篇
  2005年   354篇
  2004年   373篇
  2003年   346篇
  2002年   254篇
  2001年   104篇
  2000年   115篇
  1999年   86篇
  1998年   39篇
  1997年   44篇
  1996年   33篇
  1995年   25篇
  1994年   17篇
  1993年   21篇
  1992年   29篇
  1991年   20篇
  1990年   18篇
  1989年   20篇
  1988年   18篇
  1987年   20篇
  1986年   21篇
  1985年   15篇
  1984年   16篇
  1983年   14篇
  1982年   13篇
  1981年   12篇
  1980年   12篇
  1979年   11篇
  1978年   9篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
  1972年   9篇
排序方式: 共有8013条查询结果,搜索用时 31 毫秒
931.
932.
AtPUB18 and AtPUB19 are homologous U-box E3 ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). AtPUB19 is a negative regulator of abscisic acid (ABA)-mediated drought responses, whereas the role of AtPUB18 in drought responses is unknown. Here, loss-of-function and overexpression tests identified AtPUB18 as a negative regulator in ABA-mediated stomatal closure and water stress responses. The atpub18-2atpub19-3 double mutant line displayed more sensitivity to ABA and enhanced drought tolerance than each single mutant plant; therefore, AtPUB18 and AtPUB19 are agonistic. Stomatal closure of the atpub18-2atpub19-3 mutant was hypersensitive to hydrogen peroxide (H(2)O(2)) but not to calcium, suggesting that AtPUB18 and AtPUB19 exert negative effects on the ABA signaling pathway downstream of H(2)O(2) and upstream of calcium. AtPUB22 and AtPUB23 are other U-box E3 negative regulators of drought responses. Although atpub22atpub23 was more tolerant to drought stress relative to wild-type plants, its ABA-mediated stomatal movements were highly similar to those of wild-type plants. The atpub18-2atpub19-3atpub22atpub23 quadruple mutant exhibited enhanced tolerance to drought stress as compared with each atpub18-2atpub19-3 and atpub22atpub23 double mutant progeny; however, its stomatal behavior was almost identical to the atpub18-2atpub19-3 double mutant in the presence of ABA, H(2)O(2), and calcium. Overexpression of AtPUB18 and AtPUB19 in atpub22atpub23 effectively hindered ABA-dependent stomatal closure, but overexpression of AtPUB22 and AtPUB23 in atpub18-2atpub19-3 did not inhibit ABA-enhanced stomatal closure, highlighting their ABA-independent roles. Overall, these results suggest that AtPUB18 has a linked function with AtPUB19, but is independent from AtPUB22 and AtPUB23, in negative regulation of ABA-mediated drought stress responses.  相似文献   
933.
Park SH  Bang SW  Jeong JS  Jung H  Redillas MC  Kim HI  Lee KH  Kim YS  Kim JK 《Planta》2012,235(6):1397-1408
We have previously characterized the constitutively active promoters of the APX, PGD1 and R1G1B genes in rice (Park et al. 2010 in J Exp Bot 61:2459–2467). To have potential crop biotechnology applications, gene promoters must be stably active over many generations. In our current study, we report our further detailed analysis of the APX, PGD1 and R1G1B gene promoters in various organs and tissues of transgenic rice plants for three (T3–5) homozygous generations. The copy numbers in 37 transgenic lines that harbor promoter:gfp constructs were determined and promoter activities were measured by real-time qPCR. Analysis of the 37 lines revealed that 15 contained a single copy of one of the three promoter:gfp chimeric constructs. The promoter activity levels were generally higher in multi-copy lines, whereas variations in these levels over the T3–5 generations studied were observed to be smaller in single-copy than in multi-copy lines. The three promoters were further found to be highly active in the whole plant body at both the vegetative and reproductive stages of plant growth, with the exception of the APX in the ovary and R1G1B in the pistil and filaments where zero or very low levels of activity were detected. Of note, the spatial activities of the PGD1 promoter were found to be strikingly similar to those of the ZmUbi1, a widely used constitutive promoter. Our comparison of promoter activities between T3, T4 and T5 plants revealed that the APX, PGD1 and R1G1B promoters maintained their activities at comparable levels in leaves and roots over three homozygous generations and are therefore potentially viable alternative promoters for crop biotechnology applications.  相似文献   
934.
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.  相似文献   
935.
936.
Tropical peatlands cover over 25 Mha in Southeast Asia and are estimated to contain around 70 Gt of carbon. Peat swamp forest ecosystems are an important part of the region's natural resources supporting unique flora and fauna endemic to Southeast Asia. Over recent years, industrial plantation development on peatland, especially for oil palm cultivation, has created intense debate due to its potentially adverse social and environmental effects. The lack of objective up‐to‐date information on the extent of industrial plantations has complicated quantification of their regional and global environmental consequences, both in terms of loss of forest and biodiversity as well as increases in carbon emissions. Based on visual interpretation of high‐resolution (30 m) satellite images, we find that industrial plantations covered over 3.1 Mha (20%) of the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2010, surpassing the area of Belgium and causing an annual carbon emission from peat decomposition of 230–310 Mt CO2e. The majority (62%) of the plantations were located on the island of Sumatra, and over two‐thirds (69%) of all industrial plantations were developed for oil palm cultivation, with the remainder mostly being Acacia plantations for paper pulp production. Historical analysis shows strong acceleration of plantation development in recent years: 70% of all industrial plantations have been established since 2000 and only 4% of the current plantation area existed in 1990. ‘Business‐as‐usual’ projections of future conversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. This would increase the annual carbon emission to somewhere between 380 and 920 Mt CO2e by 2020 depending on water management practices and the extent of plantations.  相似文献   
937.
Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.  相似文献   
938.
939.
Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4flox/flox) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.  相似文献   
940.
ABSTRACT: BACKGROUND: In sparse-view CT imaging, strong streak artifacts may appear around bony structures and they often compromise the image readability. Compressed sensing (CS) or total variation (TV) minimization-based image reconstruction method has reduced the streak artifacts to a great extent, but, sparse-view CT imaging still suffers from residual streak artifacts. We introduce a new bone-induced streak artifact reduction method in the CS-based image reconstruction. METHODS: We firstly identify the high-intensity bony regions from the image reconstructed by the filtered backprojection (FBP) method, and we calculate the sinogram stemming from the bony regions only. Then, we subtract the calculated sinogram, which stands for the bony regions, from the measured sinogram before performing the CS-based image reconstruction. The image reconstructed from the subtracted sinogram will stand for the soft tissues with little streak artifacts on it. To restore the original image intensity in the bony regions, we add the bony region image, which has been identified from the FBP image, to the soft tissue image to form a combined image. Then, we perform the CS-based image reconstruction again on the measured sinogram using the combined image as the initial condition of the iteration. For experimental validation of the proposed method, we take images of a contrast phantom and a rat using a micro-CT and we evaluate the reconstructed images based on two figures of merit, relative mean square error and total variation caused by the streak artifacts. RESULTS: The images reconstructed by the proposed method have been found to have smaller streak artifacts than the ones reconstructed by the original CS-based method when visually inspected. The quantitative image evaluation studies have also shown that the proposed method outperforms the conventional CS-based method. CONCLUSIONS: The proposed method can effectively suppress streak artifacts stemming from bony structures in sparse-view CT imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号