全文获取类型
收费全文 | 2806篇 |
免费 | 172篇 |
国内免费 | 20篇 |
专业分类
2998篇 |
出版年
2023年 | 17篇 |
2022年 | 30篇 |
2021年 | 50篇 |
2020年 | 34篇 |
2019年 | 44篇 |
2018年 | 107篇 |
2017年 | 88篇 |
2016年 | 109篇 |
2015年 | 121篇 |
2014年 | 106篇 |
2013年 | 149篇 |
2012年 | 182篇 |
2011年 | 179篇 |
2010年 | 131篇 |
2009年 | 130篇 |
2008年 | 153篇 |
2007年 | 119篇 |
2006年 | 137篇 |
2005年 | 175篇 |
2004年 | 184篇 |
2003年 | 143篇 |
2002年 | 86篇 |
2001年 | 24篇 |
2000年 | 38篇 |
1999年 | 27篇 |
1998年 | 17篇 |
1997年 | 21篇 |
1996年 | 28篇 |
1995年 | 12篇 |
1994年 | 8篇 |
1993年 | 9篇 |
1991年 | 11篇 |
1989年 | 9篇 |
1988年 | 7篇 |
1987年 | 6篇 |
1986年 | 12篇 |
1985年 | 11篇 |
1983年 | 8篇 |
1980年 | 6篇 |
1978年 | 8篇 |
1959年 | 9篇 |
1958年 | 23篇 |
1957年 | 26篇 |
1956年 | 26篇 |
1955年 | 23篇 |
1954年 | 23篇 |
1953年 | 13篇 |
1952年 | 14篇 |
1951年 | 10篇 |
1950年 | 9篇 |
排序方式: 共有2998条查询结果,搜索用时 0 毫秒
91.
Dae Hong Kim Ik Hwan Lee Seung Taek Nam Ji Hong Peng Zhang Jae Sam Hwang Heon Seok Hyemin Choi Dong Gun Lee Jae Il Kim Ho Kim 《Biochemical and biophysical research communications》2014
We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin. 相似文献
92.
Yagahira E. Castro-Sesquen Robert H. Gilman Gerson Galdos-Cardenas Lisbeth Ferrufino Gerardo Sánchez Edward Valencia Ayala Lance Liotta Caryn Bern Alessandra Luchini the Working Group on Chagas Disease in Bolivia Peru 《PLoS neglected tropical diseases》2014,8(10)
Background
Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease.Methodology/Principal Findings
This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion.Conclusion/Significance
Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease. 相似文献93.
Hak Jun Ahn Kang Il Kim Nguyen Ngoc Hoan Churl Ho Kim Eunpyo Moon Kyeong Sook Choi Sang Sik Yang Jong-Soo Lee 《PloS one》2014,9(1)
The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH−, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. 相似文献
94.
Perovskite oxide ceramics attracts significant attention as a strong candidate of bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalyst for the metal‐air batteries. Numerous approaches to the viability of bifunctional perovskite electrocatalyst represent that the electrochemical performance is highly correlated with defect chemistry, surface structure, and overall polycrystalline perovskite structure. By making use of the intrinsic flexibility of internal structure and high nonstoichiometry in perovskite oxide, the heat treatment effect of the complex Ba0.5Sr0.5CoxFe1‐xO3‐δ (x = 0.2 and 0.8) perovskites in argon atmosphere at 950 °C (Ar‐BSCF5582 and Ar‐BSCF5528) on the surface structure/defect chemistry and electrocatalytic performance is intensively investigated. Upon heat‐treatment in argon atmosphere, the amorphous thickness layer increases from ≈20 to 180–200 nm in BSCF5582, while there is little change in BSCF5528 with ≈20 nm. The electrocatalytic performance of BSCF5582 catalyst both in ORR and OER deteriorates seriously, while Ar‐BSCF5528 demonstrates a significant increase of electrochemical performance in ORR. This study demonstrates that the electrochemical performances of a perovskite catalyst can be significantly determined by the simultaneous modification of both surface structure and internal defect chemistry, which are explained with transmission electron microscopy and atomic‐selective X‐ray absorption fine structure analyses, respectively. 相似文献
95.
Chang Hee Kim Hark K Kim R Luke Rettig Joseph Kim Eunbyul T Lee Olga Aprelikova Il J Choi David J Munroe Jeffrey E Green 《BMC medical genomics》2011,4(1):1-14
Background
Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological interaction networks and identifies signature genes relevant for chemotherapy resistance.Methods
An integrated network was constructed by collecting multiple metabolic interactions from public databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The identified pathways were then scored using differential expression values from microarray data in chemosensitive and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate the significance of genes within each filtered pathway based on topological characteristics.Results
By this method, we discovered pathways specific to chemoresistance. Many of these pathways were consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that integration of pathway structure information with gene differential expression analysis can identify dissimilar modes of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant during chemotherapy. In particular, we observed that some genes were key factors for joining two or more metabolic pathways and passing down signals, which may be potential key targets for treatment.Conclusions
This study is expected to identify targets for chemoresistant issues and highlights the interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of biological action of drug resistance but also provide information on potential key targets (new biological hypothesis) for further drug-development efforts. 相似文献96.
Park CM Choi JI Choi JH Kim SY Park WK Seong CM 《Bioorganic & medicinal chemistry letters》2011,21(2):698-703
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors. 相似文献
97.
Self-incompatibility is a genetically controlled process used to prevent self-pollination. We report here the characterization of pollen cDNA clones of Lycopersicon peruvianum, and the identification of a genotype-specific pollen factor involved in self-incompatibility. To identify the latter, differential mRNA display RT-PCR was performed on pollen cDNAs from S12Sa and S11Sa genotypes. We isolated four cDNA fragments expressed preferentially in S12Sa pollen, and screened a cDNA library from S12Sa pollen with the four cDNA fragments to isolate the corresponding full length cDNAs. One of the four isolated cDNAs encoded part of an actin depolymerizing factor protein that we named LpADF. LpADF is highly homologous to actin depolymerizing factors of Arabidopsis thaliana, Lilium longiflorum, and Zea mays. RNA blot analysis revealed that LpADF is only expressed in mature pollen of the S12Sa genotype, and is therefore a candidate pollen factor in the gametophyte self-incompatibility system of L. peruvianum. 相似文献
98.
Sangmoo Lee Jin Il Kim Jun Heo Ilseob Lee Sehee Park Min-Woong Hwang Joon-Yong Bae Mee Sook Park Hyoung Jin Park Man-Seong Park 《Journal of microbiology (Seoul, Korea)》2013,51(5):676-681
Herbal medicine has been used in the orient for thousands of years to treat large and small ailments, including microbial infections. Although there are treatments for influenza virus infection, there is no treatment for drug-resistant viruses. It is time that we explored and exploited the multi-component nature of herbal extracts as multi-drug combination therapies. Here, we present data on the anti-influenza virus effect of a medicinal mushroom, Phellinus igniarius. The P. igniarius water extract was effective against influenza A and B viruses, including 2009 pandemic H1N1, human H3N2, avian H9N2, and oseltamivir-resistant H1N1 viruses. Virological assays revealed that the extract may interfere with one or more early events in the influenza virus replication cycle, including viral attachment to the target cell. Therefore, our results provide new insights into the use of P. igniarius as an anti-influenza medicine. 相似文献
99.
Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood. This study aimed to investigate the role of Lsd1-S112A, a phosphorylation defective mutant, in the cigarette smoke extract/LPS-induced chronic obstructive pulmonary disease (COPD) model using Lsd1SA/SA mice and to explore the potential mechanism underpinning the development of COPD. We found that Lsd1SA/SA mice exhibited increased susceptibility to CSE/LPS-induced COPD, including high inflammatory cell influx into the bronchoalveolar lavage fluid and airspace enlargement. Additionally, the high gene expression associated with the inflammatory response and oxidative stress was observed in cells and mice containing Lsd1-S112A. Similar results were obtained from the mouse embryonic fibroblasts exposed to a PKCα inhibitor, Go6976. Thus, the lack of LSD1 phosphorylation exacerbates CSE/LPS-induced COPD by elevating inflammation and oxidative stress. 相似文献
100.
Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed. 相似文献