首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   58篇
  1171篇
  2023年   2篇
  2022年   11篇
  2021年   14篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   27篇
  2014年   46篇
  2013年   67篇
  2012年   58篇
  2011年   74篇
  2010年   37篇
  2009年   45篇
  2008年   70篇
  2007年   97篇
  2006年   72篇
  2005年   79篇
  2004年   69篇
  2003年   66篇
  2002年   52篇
  2001年   16篇
  2000年   10篇
  1999年   8篇
  1998年   12篇
  1997年   18篇
  1996年   19篇
  1995年   9篇
  1994年   13篇
  1993年   10篇
  1992年   13篇
  1991年   7篇
  1990年   11篇
  1989年   13篇
  1988年   2篇
  1987年   8篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   14篇
  1982年   9篇
  1981年   4篇
  1980年   10篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1973年   2篇
  1970年   2篇
排序方式: 共有1171条查询结果,搜索用时 0 毫秒
121.
Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.  相似文献   
122.
During murine embryonic development, primitive hematopoiesis occurs in the yolk sac (YS). Recent studies have shown that the YS also harbors definitive hematopoietic activity. However, the population of YS cells contributing to definitive hematopoiesis has not been identified. In this study, we characterized the hematopoietic cell populations in the YS of mouse embryos from E9.5 to E14.5 in view of the expression profiles of CD45 and c-Kit. The YS cells from E9.5 to E11.5 could be divided into six populations: CD45(-) c-Kit(-) , CD45(-) c-Kit(low) , CD45(-) c-Kit(high) , CD45(low) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) . Among these populations, CD45(low) c-Kit(high) cells showed the highest multilineage hematopoietic colony-forming activity. Later in development, the YS cells from E12.5 to E14.5 lost the second and fourth populations (i.e., they retained CD45(-) c-Kit(-) , CD45(-) c-Kit(high) , CD45(high) c-Kit(high) and CD45(high) c-Kit(very low) cells), and concurrently with the disappearance of the CD45(low) c-Kit(high) population, no significant hematopoietic activity was found in any of the populations on and after E12.5. CD45(low) c-Kit(high) YS cells, which had a round morphology with a large nucleus, possessed the ability to differentiate into myeloid and B lymphoid cells when cultured with stromal cells. These findings suggest that CD45(low) c-Kit(high) YS cells include more undifferentiated cells than the other YS cell populations and possess in vitro potency to differentiate into multilineage hematopoietic cells. Furthermore, this cell population disappears from the YS at around E12.5, when the site of hematopoiesis has already shifted to the fetal liver and the placenta.  相似文献   
123.
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.  相似文献   
124.
Summary A microassay was developed to study the rapid binding characteristics of murine macrophages activated by gamma interferon and muramyl dipeptide to adherent neoplastic or nonneoplastic target cells. The binding of tumor cells to both activated and nonactivated macrophages was time- and temperature-dependent, and independent of tumor cell type. Activated macrophages bound more tumor cells than nonactivated macrophages. The initial binding of macrophages to target cells did not necessarily lead to lysis. First, primed macrophages bound tumor cells but did not lyse them, and second, nonactivated macrophages bound nontumorigenic cells without subsequent lysis. The rapid binding assay described here could prove useful in investigating the recognition mechanism(s) between macrophages and tumor cells derived from solid primary and metastatic cancers.  相似文献   
125.
A denitrifying phototroph, Rhodobacter sphaeroides f. sp. denitrificans, has the ability to denitrify by respiring nitrate. The periplasmic respiratory nitrate reductase (Nap) catalyses the first step in denitrification and is encoded by the genes, napKEFDABC. By assaying the ss-galactosidase activity of napKEFD-lacZ fusions in wild type and nap mutant cells grown under various growth conditions, the environmental signal for inducing nap expression was examined. Under anoxic conditions with nitrate, nap genes expression in the wild-type strain was highest in the dark, and somewhat lowered by incident light, but that of the napA, napB, and napC mutant strains was low, showing that nap expression is dependent on nitrate respiration. Under oxic conditions, both the wild type and nap mutant cells showed high ss-galactosidase activities, comparable to the wild-type grown under anoxic conditions with nitrate. Myxothiazol, a specific inhibitor of the cytochrome bc (1) complex, did not affect the beta-galactosidase activity in the wild-type cells grown aerobically, suggesting that the redox state of the quinone pool was not a candidate for the activation signal for aerobic nap expression. These results suggested that the trans-acting regulatory signals for nap expression differ between anoxic and oxic conditions. Deletion analysis showed that the nucleotide sequence from -135 to -88 with respect to the translational start point is essential for nap expression either under anoxic or oxic conditions, suggesting that the same cis-acting element is involved in regulating nap expression under either anoxic with nitrate or oxic conditions.  相似文献   
126.
Vascular endothelial growth factor (VEGF) is considered to be important in promotion of capillary growth in skeletal muscles exposed to increased activity. We studied its interactions with nitric oxide (NO) by examining the expression of endothelial NO synthase (NOS), VEGF, and VEGF receptor-2 (VEGFR-2) proteins in relation to capillary growth in rat extensor digitorum longus muscles electrically stimulated for 2, 4, or 7 days with and without NOS inhibition by N(omega)-nitro-L-arginine (L-NNA, 3 mg/day). Stimulation increased all proteins from 2 days onward, concomitantly with capillary proliferation (labeling for proliferating cell nuclear antigen). Capillary-to-fiber ratio was elevated by 25% after 7 days. Concurrent oral administration of L-NNA did not affect the increase in endothelial NOS but depressed its activity, as shown by increased blood pressure and decreased arteriolar diameters in 2-day-stimulated muscles. NOS inhibition eliminated the increased expression of VEGFR-2 and VEGF proteins in muscles stimulated for 2 and 4 days but not for 7 days. However, it depressed capillary proliferation and the increase in C/F at all time points. We conclude that, in stimulated muscles, NO, generated by activation of neuronal NOS by muscle activity or endothelial NOS by increased blood flow and capillary shear stress, may increase capillary proliferation in the early stages of stimulation through upregulation of VEGFR-2 and VEGF. With longer stimulation, capillary growth appears to require NO, and high levels of VEGF and VEGFR-2 may be contributing to maintenance of the increased capillary bed.  相似文献   
127.
For the fermentative production of plant-specific flavanones (naringenin, pinocembrin) by Escherichia coli, a plasmid was constructed which carried an artificial biosynthetic gene cluster, including PAL encoding a phenylalanine ammonia-lyase from a yeast, ScCCL encoding a cinnamate/coumarate:CoA ligase from the actinomycete Streptomyces coelicolor A3(2), CHS encoding a chalcone synthase from a licorice plant and CHI encoding a chalcone isomerase from the Pueraria plant. The recombinant E. coli cells produced (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. When the two subunit genes of acetyl-CoA carboxylase from Corynebacterium glutamicum were expressed under the control of the T7 promoter and the ribosome-binding sequence in the recombinant E. coli cells, the flavanone yields were greatly increased, probably because enhanced expression of acetyl-CoA carboxylase increased a pool of malonyl-CoA that was available for flavanone synthesis. Under cultural conditions where E. coli at a cell density of 50 g/l was incubated in the presence of 3 mM tyrosine or phenylalanine, the yields of naringenin and pinocembrin reached about 60 mg/l. The fermentative production of flavanones in E. coli is the first step in the construction of a library of flavonoid compounds and un-natural flavonoids in bacteria.  相似文献   
128.
APP, amyloid beta precursor protein, is linked to the onset of Alzheimer's disease (AD). We have here found that transforming growth factor beta2 (TGFbeta2), but not TGFbeta1, binds to APP. The binding affinity of TGFbeta2 to APP is lower than the binding affinity of TGFbeta2 to the TGFbeta receptor. On binding to APP, TGFbeta2 activates an APP-mediated death pathway via heterotrimeric G protein G(o), c-Jun N-terminal kinase, NADPH oxidase, and caspase 3 and/or related caspases. Overall degrees of TGFbeta2-induced death are larger in cells expressing a familial AD-related mutant APP than in those expressing wild-type APP. Consequently, superphysiological concentrations of TGFbeta2 induce neuronal death in primary cortical neurons, whose one allele of the APP gene is knocked in with the V642I mutation. Combined with the finding indicated by several earlier reports that both neural and glial expression of TGFbeta2 was upregulated in AD brains, it is speculated that TGFbeta2 may contribute to the development of AD-related neuronal cell death.  相似文献   
129.
Theiler's murine encephalomyelitis virus (TMEV) causes a demyelinating disease in infected mice which has similarities to multiple sclerosis. Spleen cells from TMEV-infected SJL/J mice stimulated with antigen-presenting cells infected with TMEV resulted in a population of autoreactive CD8+ cytotoxic T cells that kill uninfected syngeneic cells. We established CD8+ T cell clones that could kill both TMEV-infected and uninfected syngeneic targets, although infected target cells were killed more efficiently. The CD8+ T-cell clones produced gamma interferon when incubated with either infected or uninfected syngeneic target cells. Intracerebral injection of the clones into na?ve mice induced degeneration, not only in the brain, but also in the spinal cord. This suggests that CD8+ Tc1 cells could play a pathogenic role in central nervous system inflammation.  相似文献   
130.
Japanese flounder, Paralichthys olivaceus juveniles were vaccinated against viral hemorrhagic septicemia (VHS) by intramuscular injection of 10 microg of a plasmid DNA vector which encodes the viral hemorrhagic septicemia virus (VHSV) glycoprotein (G) gene under the control of the cytomegalovirus promoter. Experimental challenge of two viral doses (1 x 10(2) TCID50 and 1 x 10(3) TCID50) one month post-vaccination revealed that the G gene was able to induce protective immunity against VHS and this lasted until 21 days after the challenge. The VHSV G-protein gene DNA vaccine had a high protective efficiency, giving relative percentage survival (RPS) values of at least 93%. The defense mechanisms activated by the DNA vaccine were further elucidated by microarray analysis. Non-specific immune response genes such as NK, Kupffer cell receptor, MIP1-alpha and Mx1 protein gene were observed to be up-regulated by the VHSV G-protein DNA vaccine at 1 and 3 days post-immunization. Also, specific immune-related genes including the CD20 receptor, CD8 alpha chain, CD40 and B lymphocyte cell adhesion molecule were also up-regulated during that time. We observed significant up-regulation of some immune-related genes that are necessary for antiviral defense. Significant up- and/or down-regulation of unknown genes was also observed upon DNA vaccination. Our results confirm previous reports that the VHSV G gene elicits strong humoral and cellular immune responses which may play a pivotal role in protecting the fish during virus infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号