首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   52篇
  2021年   5篇
  2020年   6篇
  2018年   8篇
  2017年   10篇
  2016年   12篇
  2015年   15篇
  2014年   23篇
  2013年   37篇
  2012年   40篇
  2011年   37篇
  2010年   27篇
  2009年   22篇
  2008年   41篇
  2007年   24篇
  2006年   47篇
  2005年   53篇
  2004年   53篇
  2003年   53篇
  2002年   49篇
  2001年   10篇
  2000年   11篇
  1999年   23篇
  1998年   10篇
  1997年   10篇
  1996年   8篇
  1995年   13篇
  1994年   14篇
  1993年   7篇
  1992年   11篇
  1991年   16篇
  1990年   16篇
  1989年   10篇
  1988年   18篇
  1987年   23篇
  1986年   9篇
  1985年   7篇
  1984年   11篇
  1983年   9篇
  1982年   15篇
  1981年   8篇
  1980年   10篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1974年   7篇
  1973年   3篇
  1971年   3篇
  1967年   3篇
  1966年   7篇
排序方式: 共有904条查询结果,搜索用时 15 毫秒
81.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   
82.
The nuclear pore complex (NPC) facilitates nucleocytoplasmic transport, a crucial process for various cellular activities. The NPC comprises ~30 nucleoporins and is well characterized in vertebrates and yeast. However, only eight plant nucleoporins have been identified, and little information is available about the complete molecular structure of plant NPCs. In this study, an interactive proteomic approach was used to identify Arabidopsis thaliana nucleoporins. A series of five cycles of interactive proteomic analysis was performed using green fluorescent protein (GFP)-tagged nucleoporins. The identified nucleoporins were then cloned and subcellular localization analyses were performed. We found that the plant NPC contains at least 30 nucleoporins, 22 of which had not been previously annotated. Surprisingly, plant nucleoporins shared a similar domain organization to their vertebrate (human) and yeast (Saccharomyces cerevisiae) counterparts. Moreover, the plant nucleoporins exhibited higher sequence homology to vertebrate nucleoporins than to yeast nucleoporins. Plant NPCs lacked seven components (NUCLEOPORIN358 [Nup358], Nup188, Nup153, Nup45, Nup37, NUCLEAR DIVISION CYCLE1, and PORE MEMBRANE PROTEIN OF 121 kD) that were present in vertebrate NPCs. However, plants possessed a nucleoporin, Nup136/Nup1, that contained Phe-Gly repeats, and sequence analysis failed to identify a vertebrate homolog for this protein. Interestingly, Nup136-GFP showed greater mobility on the nuclear envelope than did other nucleoporins, and a Nup136/Nup1 deficiency caused various defects in plant development. These findings provide valuable new information about plant NPC structure and function.  相似文献   
83.
The creation of transgenic plants has contributed extensively to the advancement of plant science. Establishing homozygous transgenic lines is time‐consuming and laborious, and using antibiotics or herbicides to select transformed plants may adversely affect the growth of some transgenic plants. Here we describe a novel technology, which we have named FAST (fluorescence‐accumulating seed technology), that overcomes these difficulties. Although this technology was designed for use in Arabidopsis thaliana, it may be adapted for use in other plants. The technology is based on the expression of a fluorescent co‐dominant screenable marker FAST, under the control of a seed‐specific promoter, on the oil body membrane. The FAST marker harbors a fusion gene encoding either GFP or RFP with an oil body membrane protein that is prominent in seeds. The marker protein was only expressed in a specific organ (i.e. in dry seeds) and at a specific time (i.e. during dormancy), which are desirable features of selectable and/or screenable markers. This technique provides an immediate and non‐destructive method for identifying transformed dry seeds. It identified the heterozygous transformed seeds among the T1 population and the homozygous seeds among the T2 population with a false‐discovery rate of <1%. The FAST marker reduces the length of time required to produce homozygous transgenic lines from 7.5 to 4 months. Furthermore, it does not require sterilization, clean‐bench protocols or the handling of large numbers of plants. This technology should greatly facilitate the generation of transgenic Arabidopsis plants.  相似文献   
84.
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.  相似文献   
85.
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.  相似文献   
86.
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.  相似文献   
87.
We isolated an Arabidopsis thaliana mutant, katamari2 (kam2), that has a defect in the organization of endomembranes. This mutant had deformed endosomes and formed abnormally large aggregates with various organelles. Map-based cloning revealed that kam2 is allelic to gravitropism defective 2 (grv2). The KAM2/GRV2 gene encodes a homolog of a DnaJ domain-containing RECEPTOR-MEDIATED ENDOCYTOSIS-8, which is considered to play a vital role in the endocytotic pathway from the plasma membrane to lysosomes in animal cells. Immunofluorescent staining showed that KAM2/GRV2 protein localizes on punctate structures, which did not merge with any markers for Golgi, trans-Golgi network, endosomes, or prevacuolar compartments. KAM2/GRV2, which does not have a predicted transmembrane domain, was peripherally associated with the membrane surface of uncharacterized compartments. KAM2/GRV2 was expressed at the early to middle stages of seed maturation. We found kam2 mis-sorted seed storage proteins by secreting them from cells, indicating that KAM2/GRV2 is involved in the transport of the proteins into protein storage vacuoles. kam2 had another defect in embryogenesis. Half of the developing kam2-1 cotyledons grew into the opposite space of the seeds before the walking stick-shaped embryo stage. Our findings suggest that KAM2/GRV2 is required for proper formation of the endosomes involving protein trafficking to the vacuoles and determination of growth axis of the embryo.  相似文献   
88.
The production of transgenic plants has contributed greatly to plant research. Previously, an improved method for screening transgenic Arabidopsis thaliana seeds using the FAST (Fluorescence-Accumulating-Seed Technology) method and FAST marker was reported. Arabidopsis seeds containing the FAST marker may be visually screened using a fluorescence stereomicroscope or blue LED handy-type instrument. Although the FAST method was originally designed for Arabidopsis screens, this study endeavors to adapt this method for the screening of other plants. Here, an optimized technology, designated the OsFAST method, is presented as a useful tool for screening transgenic rice seeds. The OsFAST method is based on the expression of the OsFAST-G marker under the control of a seed-embryo-specific promoter, similar to the Arabidopsis FAST-G marker. The OsFAST method provides a simple and non-destructive method for identifying transgenic rice seeds. It is proposed that the FAST method is adaptable to various plant species and will enable a deeper analysis of the floral-dip method.Key words: Oryza sativa, oleosin, seed, green fluorescent protein, transformation, screenable markerThe production of transgenic plants has significantly enhanced many areas of plant science research. Antibiotic/herbicide-resistance genes are traditionally used as screenable markers for the selection of transgenic plants. However, this approach does have disadvantages. First, antibiotics or herbicides occasionally inhibit the growth of transgenic plants, regardless of the incorporation of antibiotic- or herbicide-resistance genes1 into the transgenic plants. Second, the identification of resistant transgenic plants requires that the seed population be sown onto plates containing antibiotics or herbicides. Third, the selection process is slow and labor intensive, often involving the screening of vast numbers of potentially transgenic seeds on selective plates.To overcome these disadvantages, an improved approach for selecting transgenic Arabidopsis thaliana, designated the FAST (Fluorescence-Accumulating-Seed Technology) method, was developed. This method employs the use of a fluorescent protein that is expressed in seeds and used as a visual screenable marker for the identification of transgenic seeds. The seed-specific protein oleosin, a family of oil-body-membrane proteins,2 has an important role as a size regulator of oil bodies.3 AtOLE1, the most abundant oleosin, functions in the freezing tolerance of Arabidopsis seeds.4 A plasmid containing an AtOLE1-GFP fusion gene controlled by the AtOLE1 promoter was constructed and designated the FAST-G (Fluorescence-Accumulating-Seed Technology with OLE1-GFP) marker. Interestingly, Arabidopsis seeds containing the FAST-G marker emitted clear fluorescence under a fluorescence stereomicroscope or blue LED handy-type instrument. The transgenic seeds were visually identified by the seed fluorescence without the use of antibiotics or herbicides, thus indicating that the FAST method offers a nondestructive approach. The FAST marker permits the identification of homozygous seeds among the T2 population with a false discovery rate of less than 1% as a co-dominant screenable marker. In contrast to conventional methods using antibiotics or herbicides, the FAST method reduces the amount of time required to acquire homozygous transgenic plants from 7.5 months to 4 months. The fluorescence of the FAST-G marker was limited to a specific organ (i.e., in seeds) and a specific time (i.e., during dormancy), desirable characteristics of selectable and/or screenable markers. Furthermore, the FAST marker does not require sterile seeding and the handling of large numbers of plants.  相似文献   
89.
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号