首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   92篇
  2022年   8篇
  2021年   8篇
  2020年   10篇
  2019年   5篇
  2018年   16篇
  2017年   16篇
  2016年   17篇
  2015年   27篇
  2014年   38篇
  2013年   62篇
  2012年   63篇
  2011年   59篇
  2010年   49篇
  2009年   40篇
  2008年   62篇
  2007年   44篇
  2006年   67篇
  2005年   72篇
  2004年   77篇
  2003年   67篇
  2002年   70篇
  2001年   33篇
  2000年   30篇
  1999年   31篇
  1998年   19篇
  1997年   22篇
  1996年   9篇
  1995年   22篇
  1994年   20篇
  1993年   14篇
  1992年   14篇
  1991年   12篇
  1990年   28篇
  1989年   11篇
  1988年   15篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   10篇
  1982年   10篇
  1981年   6篇
  1980年   12篇
  1979年   8篇
  1978年   3篇
  1976年   6篇
  1974年   5篇
  1972年   4篇
  1971年   3篇
  1967年   3篇
  1966年   7篇
排序方式: 共有1277条查询结果,搜索用时 78 毫秒
71.
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke’s discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.

Seven senior plant cell biologists reflect on foundational contributions to a variety of topics, including pollen tube signaling, cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology.  相似文献   
72.
Extracellular serine protease neuropsin (NP) is expressed in the forebrain limbic area of adult brain and is implicated in synaptic plasticity. We screened for endogenous NP inhibitors with recombinant NP (r-NP) from extracts of the hippocampus and the cerebral cortex in adult mouse brain. Two SDS-stable complexes were detected, and after their purification, peptide sequences were determined by amino acid sequencing and mass spectrometry, revealing that target molecules were serine proteinase inhibitor-3 (SPI3) and murinoglobulin I (MUG I). The addition of the recombinant SPI3 to r-NP resulted in an SDS-stable complex, and the complex formation followed bimolecular kinetics with an association rate constant of 3.4 +/- 0.22 x 10(6) M(-1) s(-1), showing that SPI3 was a slow, tight binding inhibitor of NP. In situ hybridization histochemistry showed that SPI3 mRNA was expressed in pyramidal neurons in the hippocampal CA1-CA3 subfields, as was NP mRNA. Alternatively, the addition of purified plasma MUG I to r-NP resulted in an SDS-stable complex, and MUG I inhibited degradation of fibronectin by r-NP to 24% at a r-NP/MUG I molar ratio of 1:2. Immunofluorescence histochemistry showed that MUG I localized in the hippocampal neurons. These findings indicate that SPI3 and MUG I serve to inactivate NP and control the level of NP in adult brain, respectively.  相似文献   
73.
Genetic alteration of one or more components of the p16(INK4A)-CDK4,6/cyclin D-retinoblastoma pathway is found in more than half of all human cancers. Therefore, CDK4 is an attractive target for the development of a novel anticancer agent. However, it is difficult to make CDK4-specific inhibitors that do not possess activity for other kinases, especially CDK2, because the CDK family has high structural homology. The three-dimensional structure of CDK2, particularly that bound with the inhibitor, has provided useful information for the synthesis of CDK2-specific inhibitors. The same approach used to make CDK4-specific inhibitors was hindered by the failure to obtain a crystal structure of CDK4. To overcome this problem, we synthesized a CDK4 mimic CDK2 protein in which the ATP binding pocket of CDK2 was replaced with that of CDK4. This CDK4 mimic CDK2 was crystallized both in the free and inhibitor-bound form. The structural information thus obtained was found to be useful for synthesis of a CDK4-specific inhibitor that does not have substantial CDK2 activity. Namely, the data suggest that CDK4 has additional space that will accommodate a large substituent such as the CDK4 selective inhibitor. Inhibitors designed to bind into this large cavity should be selective for CDK4 without having substantial CDK2 activity. This design principle was confirmed in the x-ray crystal structure of the CDK4 mimic CDK2 with a new CDK4 selective inhibitor bound.  相似文献   
74.
A large number of proteins in the tonoplast, including pumps, carriers, ion channels and receptors support the various functions of the plant vacuole. To date, few proteins involved in these activities have been identified at the molecular level. In this study, proteomic analysis was used to identify new tonoplast proteins. A primary requirement of any organelle analysis by proteomics is that the purity of the isolated organelle needs to be high. Using suspension-cultured Arabidopsis cells (Arabidopsis Col-0 cell suspension), a method was developed for the isolation of intact highly purified vacuoles. No plasma membrane proteins were detected in Western blots of the isolated vacuole fraction, and only a few proteins from the Golgi and endoplasmic reticulum. The proteomic analysis of the purified tonoplast involved fractionation of the proteins by SDS-PAGE and analysis by LC-MS/MS. Using this approach, it was possible to identify 163 proteins. These included well-characterized tonoplast proteins such as V-type H+ -ATPases and V-type H+ -PPases, and others with functions reasonably expected to be related to the tonoplast. There were also a number of proteins for which a function has not yet been deduced.  相似文献   
75.
76.
We investigated the plasma concentration of ghrelin peptide during pregnancy and lactation in rats. Plasma ghrelin levels on days 10 and 15 of pregnancy were significantly lower than those of the non-pregnant rats. Thereafter, the plasma ghrelin levels on day 20 of pregnancy sharply increased to levels comparable with those in non-pregnant rats. Ghrelin peptide concentrations in the stomach did not change significantly during pregnancy. In the hypothalamus, ghrelin mRNA levels were significantly lower on day 15 of pregnancy than in the non-pregnant rats. Also, plasma ghrelin levels were significantly lower in lactating dams than non-lactating controls on days 3 and 8 of lactation. We examined the possible involvement of prolactin and oxytocin in the regulation of plasma ghrelin concentrations during lactation. Although plasma prolactin levels were decreased by the administration of bromocriptine, plasma ghrelin levels did not differ significantly between vehicle- and drug-treated lactating rats. Administration of haloperidol produced a marked increase in plasma prolactin levels as compared with the non-lactating controls. However, plasma ghrelin levels were not significantly different between vehicle- and drug-treated rats. Administration of an oxytocin antagonist into the lateral ventricle significantly inhibited the increase in the plasma oxytocin level induced by acute suckling. However, plasma ghrelin levels did not significantly between the groups. These observations indicated that the decrease in serum ghrelin is caused by a loss of the contribution of hypothalamic ghrelin. Furthermore, the present results suggested that the suckling stimulus itself, but the release of prolactin or oxytocin, is the factor most likely to be responsible for the suppression of ghrelin secretion during lactation.  相似文献   
77.
78.
The anterior half of the mitochondrial DNA control region (mtCR) sequence (ca. 400 base pairs) was compared between two color morphotypes (A, B) of Parapercis sexfasciata from Tosa Bay, southern Japan, using 16 and 21 specimens, respectively. Intramorphotypic mtCR divergences were only 0.0–0.5% and 1.0–2.5% for morphotypes A and B, respectively. In contrast, intermorphotypic mtCR divergence was much greater, 12.7–14.0%. Furthermore, phylogenetic analysis using a neighbor-joining algorithm, with P. multifasciata as an outgroup, showed that each morphotype was reciprocally monophyletic. These results and the distinct coloration and overlapping distribution indicate that the two color morphotypes of P. sexfasciata represent two distinct species. Mismatch distribution analysis suggested that both morphotypes had undergone population expansion; however, estimates of initial population sizes and mutational timescales suggested that morphotype B comprises historically larger and older populations than morphotype A.  相似文献   
79.
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.  相似文献   
80.
We have evaluated the sizes and lifetimes of rafts in the plasma membrane from the existing literature, with a special attention paid to their intrinsically broad distributions and the limited time and space scales that are covered by the observation methods used for these studies. Distinguishing the rafts in the steady state (reserve rafts) from those after stimulation or unintentional crosslinking of raft molecules (stabilized receptor-cluster rafts) is critically important. In resting cells, the rafts appear small and unstable, and the consensus now is that their sizes are smaller than the optical diffraction limit (250 nm). Upon stimulation, the raft-preferring receptors are clustered, inducing larger, stabilized rafts, probably by coalescing small, unstable rafts or cholesterol-glycosphingolipid complexes in the receptor clusters. This receptor-cluster-induced conversion of raft types may be caused by suppression of alkyl chain isomerization and the lipid lateral diffusion in the cluster, with the aid of exclusion of cholesterol from the bulk domain and the boundary region of the majority of transmembrane proteins. We critically inspected the possible analogy to the boundary lipid concept. Finally, we propose a hypothesis for the coupling of GPI-anchored receptor signals with lipid-anchored signaling molecules in the inner-leaflet raft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号