首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   57篇
  737篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   10篇
  2016年   12篇
  2015年   15篇
  2014年   23篇
  2013年   30篇
  2012年   40篇
  2011年   39篇
  2010年   27篇
  2009年   28篇
  2008年   43篇
  2007年   30篇
  2006年   48篇
  2005年   53篇
  2004年   52篇
  2003年   53篇
  2002年   45篇
  2001年   14篇
  2000年   10篇
  1999年   16篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   13篇
  1994年   15篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有737条查询结果,搜索用时 0 毫秒
191.
NSUN2, also known as SAKI or MISU, is a methyltransferase which catalyses (cytosine-5-)-methylation of tRNA. The human NSUN2 gene is located on chromosome 5p15.31-33. We show that NSUN2 gene copy number is increased in oral and colorectal cancers. Protein expression levels of NSUN2 were determined by immunoblot using novel polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal region of the protein. In most normal tissues, NSUN2 expression levels were extremely low. On the other hand, oral and colorectal cancers typically expressed high levels of NSUN2. The level of NSUN2 was similar in interphase and mitotic cells, and immunohistochemical analysis demonstrated strong staining for NSUN2 in oral and colon cancer tissues when compared with normal tissues, providing a distinct diagnostic significance for NSUN2 in comparison with Ki-67, a widely used marker of actively proliferating cells. In addition, elevated protein expression of NSUN2 was confirmed by immunohistochemical analysis of various cancers including esophageal, stomach, liver, pancreas, uterine cervix, prostate, kidney, bladder, thyroid, and breast cancers. NSUN2 is regulated by Aurora-B, a newly developed molecular target for cancer therapy, leading us to propose that NSUN2 might become a valuable target for cancer therapy and a cancer diagnostic marker.  相似文献   
192.
Characterization of Brassica S-haplotypes lacking S-locus glycoprotein   总被引:4,自引:0,他引:4  
Self-incompatibility (SI) in Brassica is regulated by a single multi-allelic locus, S, which contains highly polymorphic stigma-expressed genes, SLG and SRK. While SRK is shown to be the determinant of female SI specificity, SLG is thought to assist the function of SRK. Here we report that the SLG genes of self-incompatible S(18) and S(60) homozygotes of Brassica oleracea have an in-frame stop codon and a 23 bp deletion resulting in a frame-shift, respectively. The finding that these SLG genes do not encode functional SLG proteins suggests that SLG is not essential for SI. The possible role of SLG in SI was discussed.  相似文献   
193.

Background

Thalamic hemorrhages cause motor paralysis, sensory impairment, and cognitive dysfunctions, all of which may significantly affect walking independence. We examined the factors related to independent walking in patients with thalamic hemorrhage who were admitted to a rehabilitation hospital.

Methods

We evaluated 128 patients with thalamic hemorrhage (75 men and 53 women; age range, 40–93 years) who were admitted to our rehabilitation hospital. The mean duration from symptom onset to rehabilitation hospital admission was 27.2 ± 10.3 days, and the mean rehabilitation hospital stay was 71.0 ± 31.4 days. Patients’ neurological and cognitive functions were examined with the National Institutes of Health Stroke Scale (NIHSS) and Mini-Mental State Examination (MMSE), respectively. The relationship between patients’ scores on these scales and their walking ability at discharge from the rehabilitation hospital was analyzed. Additionally, a decision-tree analysis was used to create a model for predicting independent walking upon referral to the rehabilitation hospital.

Results

Among the patients, 65 could walk independently and 63 could not. The two patient groups were significantly different in terms of age, duration from symptom onset to rehabilitation hospital admission, hematoma type, hematoma volume, neurological symptoms, and cognitive function. The decision-tree analysis revealed that the patient’s age, NIHSS score, MMSE score, hematoma volume, and presence of ventricular bleeding were factors that could predict independent walking.

Conclusions

In patients with thalamic hemorrhage, the neurological symptoms, cognitive function, and neuroimaging factors at onset are useful for predicting independent walking.
  相似文献   
194.
Ischemia and seizure cause excessive neuronal excitation that is associated with brain acidosis and neuronal cell death. However, the molecular mechanism of acidification-triggered neuronal injury is incompletely understood. Here, we show that asparagine endopeptidase (AEP) is activated under acidic condition, cuts SET, an inhibitor of DNase, and triggers DNA damage in brain, which is inhibited by PIKE-L. SET, a substrate of caspases, was cleaved by acidic cytosolic extract independent of caspase activation. Fractionation of the acidic cellular extract yielded AEP that is required for SET cleavage. We found that kainate provoked AEP activation and SET cleavage at N175, triggering DNA nicking in wild-type, but not AEP null, mice. PIKE-L strongly bound SET and prevented its degradation by AEP, leading to resistance of neuronal cell death. Moreover, AEP also mediated stroke-provoked SET cleavage and cell death in brain. Thus, AEP might be one of the proteinases activated by acidosis triggering neuronal injury during neuroexcitotoxicity or ischemia.  相似文献   
195.
Summary The identity of the monoamine which produces a very weak formaldehyde-induced fluorescence in some pancreatic islet cells was studied by fluorescence microscopy and immunohistochemistry either on the same tissue section or on serial tissue sections of tissue from male chickens. Pancreatic islet cells showing this very weak formaldehyde-induced fluorescence react immunohistochemically with antisera directed against insulin, aromatic L-amino acid decarboxylase and dopamine beta-hydroxylase and therefore appear to be islet B cells producing insulin and noradrenaline.  相似文献   
196.
It is well established that Peyer's patches (PPs) are sites for the differentiation of IgA plasma cell precursors, but molecular and cellular mechanisms in their trafficking remain to be elucidated. In this study, we show that alterations in type 1 sphingosine 1-phosphate (S1P) receptor expression during B cell differentiation in the PPs control the emigration of IgA plasma cell precursors. Type 1 S1P receptor expression decreased during the differentiation of IgM(+)B220(+) B cells to IgA(+)B220(+) B cells, but recovered on IgA(+)B220(-) plasmablasts for their emigration from the PPs. Thus, IgA(+)B220(-) plasmablasts migrated in response to S1P in vitro. Additionally, IgA(+) plasmablasts selectively accumulated in lymphatic regions of PPs when S1P-mediated signaling was disrupted by FTY720 treatment. This accumulation of IgA(+) plasmablasts in the PPs led to their reduction in the intestinal lamina propria and simultaneous impairment of Ag-specific intestinal IgA production against orally administered Ag. These findings suggest that S1P regulates the retention and emigration of PP B cells and plays key roles in the induction of intestinal IgA production.  相似文献   
197.
Isothiocyanates (ITCs) are degradation products of glucosinolates in crucifer plants and have repellent effect on insects, pathogens and herbivores. In this study, we report that exogenously applied allyl isothiocyanate (AITC) induced stomatal closure in Arabidopsis via production of reactive oxygen species (ROS) and nitric oxide (NO), and elevation of cytosolic Ca(2+) . AITC-induced stomatal closures were partially inhibited by an inhibitor of NADPH oxidase and completely inhibited by glutathione monoethyl ester (GSHmee). AITC-induced stomatal closure and ROS production were examined in abscisic acid (ABA) deficient mutant aba2-2 and methyl jasmonate (MeJA)-deficient mutant aos to elucidate involvement of endogenous ABA and MeJA. Genetic evidences have demonstrated that AITC-induced stomatal closure required MeJA priming but not ABA priming. These results raise the possibility that crucifer plants produce ITCs to induce stomatal closure, leading to suppression of water loss and invasion of fungi through stomata.  相似文献   
198.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila.  相似文献   
199.
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.  相似文献   
200.
Yellowing, which is related to the degradation of chlorophyll and chlorophyll–protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING1 ( NYC1 ) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll  b reductase necessary for catalyzing the first step of chlorophyll  b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll  b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll  b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro . These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll  b reductase in rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号