首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   57篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   10篇
  2016年   12篇
  2015年   15篇
  2014年   23篇
  2013年   30篇
  2012年   40篇
  2011年   39篇
  2010年   27篇
  2009年   28篇
  2008年   43篇
  2007年   30篇
  2006年   48篇
  2005年   53篇
  2004年   52篇
  2003年   53篇
  2002年   45篇
  2001年   14篇
  2000年   10篇
  1999年   16篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   13篇
  1994年   15篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
111.
112.
Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 ( PLA3 )/ GOLIATH ( GO ) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3 / GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2 – a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2 , pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1 , PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.  相似文献   
113.
Previously we found that (−)-DHMEQ, a specific NF-κB inhibitor, covalently bound to a specific cysteine of NF-κB component proteins. In the course of formation of the (−)-DHMEQ and protected cysteine conjugate, we observed an unusual intramolecular NO acyl group migration.  相似文献   
114.
Septins, a conserved family of GTP/GDP-binding proteins, are present in organisms as diverse as yeast and mammals. We analyzed the distribution of five septins, Sept6, Sept7, Sept8, Sept9 and Sept11, in various rat tissues by western blot analyses and found all septins to be expressed in brain. We also examined the developmental changes of expression of these septins in the rat brain and found that the level of Sept8 increased during post-natal development. Morphological analyses revealed that Sept8 is enriched at pre-synapses. Using yeast two-hybrid screening, we identified vesicle-associated membrane protein 2 (VAMP2), a soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE), as an interacting protein for Sept8. Synaptophysin is reported to associate with and recruit VAMP2 to synaptic vesicles and dissociate prior to forming the SNARE complex consisting of VAMP2, syntaxin and synaptosome-associated protein of 25 kDa. We showed that Sept8 suppresses the interaction between VAMP2 and synaptophysin through binding to VAMP2. In addition, we found that Sept8 forms a complex with syntaxin1A, and the Sept8-VAMP2 interaction is disrupted by synaptosome-associated protein of 25 kDa. These results suggest that Sept8 may participate in the process of the SNARE complex formation and subsequent neurotransmitter release.  相似文献   
115.
116.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   
117.
Background: African American women more often present with more aggressive types of breast cancer than Caucasian women, but little is known whether genetic polymorphisms specific to or disproportionate in African Americans are associated with their risk of breast cancer. Methods: A population-based case-control study was conducted including 194 cases identified through the Metropolitan Detroit Cancer Surveillance System and 189 controls recruited through random digit dialing to examine polymorphisms in genes involved in estrogen metabolism and action. Results: The African American-specific CYP1A1 5639C allele was associated with an increased risk of breast cancer (odds ratio (OR) = 2.34, 95% confidence interval (CI) 1.23–4.44) and this association with the CYP1A1 5639 locus was dependent on another polymorphism in the CYP3A4 gene (P = 0.043 for the interaction). In addition, African American-predominant CYP1B1 432 Val allele was significantly more often found in the cases than in the controls overall and the HSD17B1 312 Gly allele was specifically associated with premenopausal breast cancer risk (OR = 3.00, 95%CI 1.29–6.99). Conclusion: These observations need to be confirmed in larger studies due to the limited statistical power of the study based on a small number of cases.  相似文献   
118.
Phototropins 1 and 2 (phot1 and phot2) function as blue light (BL) photoreceptors for phototropism, chloroplast relocation, stomatal opening and leaf flattening in Arabidopsis thaliana. Phototropin consists of two functional domains, the N-terminal photosensory domain and the C-terminal Ser/Thr kinase domain. However, little is known about the signal transduction pathway that links the photoreceptors and the physiological responses downstream of BL perception. To understand the mechanisms by which phot2 initiates these responses, we transformed the phot1phot2 double mutant of Arabidopsis with constructs encoding translationally fused phot2:green fluorescent protein (P2G). P2G was fully functional for the phot2-specific physiological responses in these transgenic plants. It localized strongly to the plasma membrane and weakly to the cytoplasm in the dark. Upon illumination with BL, punctate P2G staining was formed within a few minutes in addition to the constitutive plasma membrane staining. This punctate distribution pattern matched well with that of the Golgi-localized KAM1DeltaC:mRFP. Brefeldin A (BFA), an inhibitor of vesicle trafficking, induced accumulation of P2G around the perinuclear region even in darkness, but the punctate pattern was not observed. After treatment of these cells with BL, P2G exhibited the punctate distribution pattern that matched with that of the Golgi marker. Hence, the light-dependent association of P2G with the Golgi apparatus was BFA-insensitive. A structure/function analysis indicated that the kinase domain was essential for the Golgi localization of phot2. The BL-induced Golgi localization of phot2 may be one of important signaling steps in the phot2 signal transduction pathway.  相似文献   
119.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is a dually functional protein, acting both as a PGD2-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. L-PGDS is expressed in oligodendrocytes (OLs) in the central nervous system and is up-regulated in OLs of the twitcher mouse, a model of globoid cell leukodystrophy (Krabbe's disease). We investigated whether up-regulation of L-PGDS is either unique to Krabbe's disease or is a more generalized phenomenon in lysosomal storage disorders (LSDs), using LSD mouse models of Tay-Sachs disease, Sandhoff disease, GM1 gangliosidosis and Niemann-Pick type C1 disease. Quantitative RT-PCR revealed that L-PGDS mRNA was up-regulated in the brains of all these mouse models. In addition, strong L-PGDS immunoreactivity was observed in OLs, but not in either astrocytes or microglia in these models. Thus, up-regulation of L-PGDS appears to be a common response of OLs in LSDs. Moreover, surface plasmon resonance analyses revealed that L-PGDS binds GM1 and GM2 gangliosides, accumulated in neurons in the course of LSD, with high affinities (KD = 65 and 210 nm, respectively). This suggests that L-PGDS may play a role in scavenging harmful lipophilic substrates in LSD.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号