首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   46篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   10篇
  2016年   12篇
  2015年   14篇
  2014年   23篇
  2013年   28篇
  2012年   38篇
  2011年   35篇
  2010年   26篇
  2009年   22篇
  2008年   41篇
  2007年   24篇
  2006年   44篇
  2005年   50篇
  2004年   51篇
  2003年   50篇
  2002年   43篇
  2001年   8篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   12篇
  1994年   13篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有661条查询结果,搜索用时 718 毫秒
531.
Effects of various compounds on the dextransucrase (EC 2.4.1.5) from Leuconostoc mesenteroides was evaluated based on the two catalytic activities of enzyme, that is the hydrolase activity for the substrate, sucrose, and the transferase activity of a d-glucosyl group to an acceptor molecule. The effectors were grouped into six categories by their activation or inhibition of the sucrase and transferase activities of dextransucrase. Type I-A inhibited both activities, type I-B inhibited the sucrase activity, and type I-C inhibited the transferase activity. Type A-A activated both the hydrolase and transferase, and type A-B activated only the transferase. Antagonistic modulation (type IA-A), was shown by methyl α-d-glucoside and glycerol, which activated the sucrase and inhibited the transferase. A double reciprocal plot for dextran gave a biphasic pattern which led to Ki values for each limb. Based on the biphasic kinetics and the action of antagonistic effectors, the regulation of dextran synthesis was discussed.  相似文献   
532.
When grown on iron-salt medium supplemented with the bisulfite ion, Leptospirillum ferrooxidans was much more sensitive to the ion than was Thiobacillus ferrooxidans. The causes of the sensitivity of L. ferrooxidans to the bisulfite ion were studied. The bisulfite ion completely inhibited the iron-oxidizing activities of L. ferrooxidans and T. ferrooxidans at 0.02 and 0.2 mM, respectively. A trapping reagent for the bisulfite ion, formaldehyde, completely reversed the inhibition. The treatment of intact cells with 1.0 mM bisulfite ion for 1 h and washing the bisulfite ion from the cells had no harmful effects on the iron-oxidizing activity of T. ferrooxidans. However, the treatment of L. ferrooxidans with 0.1 mM bisulfite ion for 1 h completely destroyed the iron-oxidizing activity. T. ferrooxidans had sulfite:ferric ion oxidoreductase activity. In contrast, a quite low level of sulfite:ferric ion oxidoreductase activity was found in L. ferrooxidans, suggesting that it is much more difficult for L. ferrooxidans to oxidize the bisulfite ion to the less harmful sulfate than it is for T. ferrooxidans. These results suggest that the sensitivity of L. ferrooxidans to the bisulfite ion is due to a lack of an active sulfite:ferric ion oxidoreductase and the sensitivity of its iron oxidase to bisulfite ion.  相似文献   
533.
Regulation of PEP-Carboxylase by Biological Clock in a CAM Plant   总被引:2,自引:0,他引:2  
The endogenous circadian rhythm in a crassulacean acid metabolism(CAM) plant Graptopetalum paraguayense was investigated. Phosphoenolpyruvatecarboxylase (PEP-C) takes two forms: the malate-sensitive dayform and the malate-insensitive night form. We monitored thestate of PEP-C by measuring the sensitivity to malate as a parameterof the circadian rhythm. We also measured vacuolar pH and malateconcentration, and contents of oxaloacetate, pyruvate and phosphoenolpyruvate(PEP). A free-running circadian oscillation was observed under continuousdim light (5 klux) after 12 h/12 h light/dark cycles at 20°C.The period of the rhythm was about 20 h. Under continuous light(18 klux), the rhythm was less clear but the length of the periodwas not affected. On the other hand, the rhythms of the vacuolarpH and the malate concentration were evident under the continuouslight, but were not clear under the continuous dim light. Therhythm disappeared in continuous darkness. The content of PEPchanged simultaneously with the transformation of PEP-C duringthe normal day-night cycles and under the continuous light,but stayed at a low level under the continuous dim light. Thisindicated that the transformation of PEP-C was not sufficientto maintain the rhythm in the carbon metabolism. Shift of the timing of the start or end of the dark period priorto the continuous illumination shifted the phase of the PEP-Crhythm without changing the period length significantly. At30°C, the rhythm of PEP-C was less clear, but the periodlength was not affected. These results suggest that the biological clock controls CO2uptake and day-night CAM cycle through regulation of PEP-C transformation. (Received August 20, 1993; Accepted December 3, 1993)  相似文献   
534.
The precise chromosomal localization of the gene for dentatorubral-pallidoluysian atrophy (DRPLA) was detected by deletion mapping. Segregation patterns of genotypes of polymerase chain reaction products of DRPLA, von Willebrand factor (F8vWF), antigen CD4(p55) (CD4) and parathyroid hormone-like hormone (PTHLH) loci were studied in patients with del(12)(p13.3p13.3), del(12)(p12.3-p11.2), del(12)(p12.1-p11.2), del(12) (p11.2p11.2) and their parents. The gene for DRPLA was assigned to p13.1-p12.3 of chromosome 12. In addition, genes for F8vWF and PTHLH were mapped to p13.2 and p11.2 of chromosome 12, respectively.  相似文献   
535.
We describe here the synthesis and the anti-angiogenic and anti-rheumatic activities of 4-(3,4,5-trimethoxyphenyl)-6-(2,4,5-trimethoxyphenyl)-2-diethylaminopyrimidine (TAS-202), a derivative of magnosalin, which is a natural product isolated from Flos magnoliae. TAS-202 inhibited the proliferation of vascular endothelial cells more potently than magnosalin, and when given orally it inhibited basic fibroblast growth factor (bFGF)-induced angiogenesis and collagen-induced arthritis in mice. This magnosalin derivative with anti-angiogenic effects is a candidate for the treatment of rheumatoid arthritis.  相似文献   
536.
Arabidopsis RD21 is a cysteine protease of the papain family. Unlike other members of the papain family, RD21 has a C-terminal extension sequence composed of two domains, a 2-kD proline-rich domain and a 10-kD domain homologous to animal epithelin/granulin family proteins. The RD21 protein was accumulated as 38- and 33-kD proteins in Arabidopsis leaves. An immunoblot showed that the 38-kD protein had the granulin domain, whereas the 33-kD protein did not. A pulse-chase experiment with Bright-Yellow 2 transformant cells expressing RD21 showed that RD21 was synthesized as a 57-kD precursor and was then slowly processed to make the 33-kD mature protein via the 38-kD intermediate. After a 12-h chase, the 38-kD intermediate was still detected in the cells. These results indicate that the N-terminal propeptide was first removed from the 57-kD precursor, and the C-terminal granulin domain was then slowly removed to yield the 33-kD mature protein. Subcellular fractionation of the Bright-Yellow 2 transformant showed that the intermediate and mature forms of RD21 were localized in the vacuoles. Under the acidic conditions of the vacuolar interior, the intermediate was found to be easily aggregated. The intermediate and the mature protein were accumulated in association with leaf senescence. Taken together, these results indicate that the intermediate of RD21 was accumulated in the vacuoles as an aggregate, and then slowly matured to make a soluble protease by removing the granulin domain during leaf senescence.  相似文献   
537.
The endoplasmic reticulum (ER) consists of dynamically changing tubules and cisternae. In animals and yeast, homotypic ER membrane fusion is mediated by fusogens (atlastin and Sey1p, respectively) that are membrane-associated dynamin-like GTPases. In Arabidopsis (Arabidopsis thaliana), another dynamin-like GTPase, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as an ER membrane fusogen, but direct evidence is lacking. Here, we show that RHD3 has an ER membrane fusion activity that is enhanced by phosphorylation of its C terminus. The ER network was RHD3-dependently reconstituted from the cytosol and microsome fraction of tobacco (Nicotiana tabacum) cultured cells by exogenously adding GTP, ATP, and F-actin. We next established an in vitro assay system of ER tubule formation with Arabidopsis ER vesicles, in which addition of GTP caused ER sac formation from the ER vesicles. Subsequent application of a shearing force to this system triggered the formation of tubules from the ER sacs in an RHD-dependent manner. Unexpectedly, in the absence of a shearing force, Ser/Thr kinase treatment triggered RHD3-dependent tubule formation. Mass spectrometry showed that RHD3 was phosphorylated at multiple Ser and Thr residues in the C terminus. An antibody against the RHD3 C-terminal peptide abolished kinase-triggered tubule formation. When the Ser cluster was deleted or when the Ser residues were replaced with Ala residues, kinase treatment had no effect on tubule formation. Kinase treatment induced the oligomerization of RHD3. Neither phosphorylation-dependent modulation of membrane fusion nor oligomerization has been reported for atlastin or Sey1p. Taken together, we propose that phosphorylation-stimulated oligomerization of RHD3 enhances ER membrane fusion to form the ER network.In eukaryotic cells, the endoplasmic reticulum (ER) is the organelle with the largest membrane area. The ER consists of an elaborate network of interconnected membrane tubules and cisternae that is continually moving and being remodeled (Friedman and Voeltz, 2011). In plant cells, ER movement and remodeling is primarily driven by the actin-myosin XI cytoskeleton (Sparkes et al., 2009; Ueda et al., 2010; Yokota et al., 2011; Griffing et al., 2014) and secondarily by the microtubule cytoskeleton (Hamada et al., 2014). Several factors involved in creating the ER architecture have been also identified (Anwar et al., 2012; Chen et al., 2012; Goyal and Blackstone, 2013; Sackmann, 2014; Stefano et al., 2014a; Westrate et al., 2015). Among them, ER membrane-bound GTPases, animal atlastins and yeast Sey1p (Synthetic Enhancement of Yop1), function as ER fusogens to form the interconnected tubular network (Hu et al., 2009; Orso et al., 2009; Anwar et al., 2012). Atlastin molecules on the two opposed membranes have been proposed to transiently dimerize to attract the two membranes to each other (Bian et al., 2011; Byrnes and Sondermann, 2011; Morin-Leisk et al., 2011; Moss et al., 2011; Lin et al., 2012; Byrnes et al., 2013). Closely attracted lipid bilayers are supposed to be destabilized by an amphipathic helical domain at the atlastin C terminus to facilitate membrane fusion (Bian et al., 2011; Liu et al., 2012; Faust et al., 2015). Knockdown of atlastins leads to fragmentation of the ER and unbranched ER tubules, while overexpression of atlastins enhances ER membrane fusion, which enlarges the ER profiles (Hu et al., 2009; Orso et al., 2009).An Arabidopsis (Arabidopsis thaliana) protein, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as a fusogen because (1) when it is disrupted, the ER network is modified into large cable-like strands of poorly branched membranes (Zheng et al., 2004; Chen et al., 2011; Stefano et al., 2012), (2) it shares sequence similarity with the above-mentioned fusogen Sey1p (Hu et al., 2009), and (3) it has structural similarity to atlastin and Sey1p, with a functional GTPase domain at the N-terminal cytosolic domain (Stefano et al., 2012) followed by two transmembrane domains and a cytosolic tail. RHD3 has a longer cytosolic C-terminal tail than do atlastin and Sey1p (Stefano and Brandizzi, 2014). It contains not only an amphipathic region but also a Ser/Thr-rich C terminus.Arabidopsis has two RHD3 isoforms called RHD3-Like 1 and RHD3-Like 2. Fluorescently tagged RHD3 and RHD3-Like 2 localize to the ER (Chen et al., 2011; Stefano et al., 2012; Lee et al., 2013). RHD3 and the two RHD3-Like proteins likely have redundant roles in ER membrane fusion (Zhang et al., 2013). Overexpression of either RHD3 or RHD3-Like 2 with a defective GTPase domain phenocopies the aberrant ER morphology in rhd3-deficient mutants (Chen et al., 2011; Lee et al., 2013).In this study, we show that the Ser/Thr-rich C terminus enhances ER membrane fusion following phosphorylation of its C terminus. We propose a model in which phosphorylation and oligomerization of RHD3 is required for efficient ER membrane fusion. Our findings clarify the mechanisms that regulate RHD3 and consequently the homeostasis of membrane fusion in the ER.  相似文献   
538.
ALADIN is a component of the nuclear pore complex in higher eukaryotes. An Arabidopsis knockout line that had a T-DNA insertion in the ALADIN gene was defective in plant growth and thylakoid development and had reduced photosynthetic activity resulting from lower chlorophyll accumulation. The mutation appeared to decrease the level of chloroplast RuBisCO subunits and PSBA and PGL35 proteins. Unexpectedly, the T-DNA insertion in the ALADIN gene decreased the expression of the neighboring gene PSRP5, which functions in translation in chloroplasts. The mutant phenotype was rescued by expressing PSRP5, but not by expressing ALADIN. The abnormal phenotypes were also detected in an artificial microRNA (amiRNA)-mediated PSRPS5 knockdown, but not in an amiRNA-mediated ALADIN knockdown line. Thus, users of T-DNA insertions should be aware that a T-DNA insertion in one gene can have effects on the expression of neighboring genes.  相似文献   
539.
The relationship between body weight and footprint area of modern avians was derived and used to estimate the body weights of non‐avian theropods taxa from the Triassic to Cretaceous and extinct avian taxa from the Cretaceous periods. Geometric information, such as the area and shape of fossil tracks of extinct avians and non‐avian theropods, was used to estimate body weight and habitat type. The percentage prediction and standard error of estimates indicated that the body weight estimated from track area is comparable with body weight estimated from body fossils bones. Therefore, this approach is useful when the fossilized track record is richer than the fossilized skeletal record. The data sets for avians and reptiles were combined and used to derive a body weight–area relationship that may be applicable to a broader range of organisms, such as plantigrade quadrupeds and digitigrade bipeds. Additionally, scatter plots of the relationship between habitat type and footprint shape of modern avians were used to infer the habitat type of extinct avians. This finding suggests that the pes of animals, living in areas characterized by fluctuating water levels, and under conditions facilitating the preservation of footprints, were similar in form to those of extant semi‐aquatic avians.  相似文献   
540.
Membrane trafficking is required during plant immune responses, but its contribution to the hypersensitive response (HR), a form of programmed cell death (PCD) associated with effector-triggered immunity, is not well understood. HR is induced by nucleotide binding-leucine-rich repeat (NB-LRR) immune receptors and can involve vacuole-mediated processes, including autophagy. We previously isolated lazarus (laz) suppressors of autoimmunity-triggered PCD in the Arabidopsis thaliana mutant accelerated cell death11 (acd11) and demonstrated that the cell death phenotype is due to ectopic activation of the LAZ5 NB-LRR. We report here that laz4 is mutated in one of three VACUOLAR PROTEIN SORTING35 (VPS35) genes. We verify that LAZ4/VPS35B is part of the retromer complex, which functions in endosomal protein sorting and vacuolar trafficking. We show that VPS35B acts in an endosomal trafficking pathway and plays a role in LAZ5-dependent acd11 cell death. Furthermore, we find that VPS35 homologs contribute to certain forms of NB-LRR protein-mediated autoimmunity as well as pathogen-triggered HR. Finally, we demonstrate that retromer deficiency causes defects in late endocytic/lytic compartments and impairs autophagy-associated vacuolar processes. Our findings indicate important roles of retromer-mediated trafficking during the HR; these may include endosomal sorting of immune components and targeting of vacuolar cargo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号