首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   14篇
  国内免费   3篇
  2023年   3篇
  2022年   10篇
  2021年   15篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   13篇
  2012年   18篇
  2011年   11篇
  2010年   10篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   13篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   2篇
  1994年   2篇
  1992年   3篇
  1990年   5篇
  1989年   5篇
  1987年   9篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
21.
Cerebral malaria (CM) is a major life-threatening complication of Plasmodium falciparum infection in humans, responsible for up to 2 million deaths annually. The mechanisms underlying the fatal cerebral complications are still not fully understood. Many theories exist on the aetiology of human CM. The sequestration hypo-thesis suggests that adherence of parasitized erythrocytes to the cerebral vasculature leads to obstruction of the microcirculation, anoxia or metabolic disturbances affecting brain function, resulting in coma. This mechanism alone seems insufficient to explain all the known features of CM. In this review we focus on another major school of thought, that CM is the result of an over-vigorous immune response originally evolved for the protection of the host. Evidence in support of this second hypothesis comes from studies in murine malaria models in which T cells, monocytes, adhesion molecules and cytokines, have been implicated in the development of the cerebral complications. Recent studies of human CM also indicate a role for the immune system in the neurological complications. However, it is likely that multiple mechanisms are involved in the induction of cerebral complications and both the presence of parasitized erythrocytes in the central nervous system (CNS) and immunopathological processes contribute to the pathogenesis of CM. Most studies examining immunopathological responses in CM have focused on reactions occurring primarily in the systemic circulation. However, these also do not fully account for the development of cerebral complications in CM. In this review we summarize results from human and mouse studies that demonstrate morphological and functional changes in the resident glial cells of the CNS. The degree of immune activation and degeneration of glial cells was shown to reflect the extent of neurological complications in murine cerebral malaria. From these results we highlight the need to consider the potentially important contribution within the CNS of glia and their secreted products, such as cytokines, in the development of human CM.  相似文献   
22.
The importance of cardiac output (CO) to blood pressure level during vasovagal syncope is unknown. We measured thermodilution CO, mean blood pressure (MBP), and leg muscle mean sympathetic nerve activity (MSNA) each minute during 60 degrees head-up tilt in 26 patients with recurrent syncope. Eight patients tolerated tilt (TT) for 45 min (mean age 60 +/- 5 yr) and 15 patients developed syncope during tilt (TS) (mean age 58 +/- 4 yr, mean tilt time 15.4 +/- 2 min). In TT patients, CO decreased during the first minute of tilt (from 3.2 +/- 0.2 to 2.5 +/- 0.3 l x min(-1) x m(-2), P = 0.001) and thereafter remained stable between 2.5 +/- 0.3 (P = 0.001) and 2.4 +/- 0.2 l x min(-1) x m(-2) (P = 0.004) at 5 and 45 min, respectively. In TS patients, CO decreased during the first minute (from 3.3 +/- 0.2 to 2.7 +/- 0.1 l x min(-1) x m(-2), P = 0.02) and was stable until 7 min before syncope, falling to 2.0 +/- 0.2 at syncope (P = 0.001). Regression slopes for CO versus time during tilt were -0.01 min(-1) in TT versus -0.1 l x min(-1) x m(-2) x min(-1) in TS (P = 0.001). However, MBP was more closely correlated to total peripheral resistance (R = 0.56, P = 0.001) and MSNA (R = 0.58, P = 0.001) than CO (R = 0.32, P = 0.001). In vasovagal reactions, a progressive decline in CO may contribute to hypotension some minutes before syncope occurs.  相似文献   
23.
BackgroundRetinal microvascular signs may provide insights into the structure and function of small vessels that are associated with renal disease. We examined the relationship of retinal microvascular signs with both prevalent and incident end-stage renal disease (ESRD) in a multi-ethnic Asian population.MethodsA total of 5763 subjects (aged ≥40 years) from two prospective population-based studies (the Singapore Malay Eye Study and the Singapore Prospective Study) were included for the current analysis. Retinopathy was graded using the modified Airlie House classification system. Retinal vascular parameters were measured using computer-assisted programs to quantify the retinal vessel widths (arteriolar and venular caliber) and retinal vascular network (fractal dimension). Data on ESRD was obtained by record linkage with the ESRD cases registered by National Registry of Diseases Office, Singapore. Multi-variable adjusted regression analyses were performed to assess the associations of baseline retinal vascular parameters and prevalent and incident ESRD.ResultsAt baseline, 21(0.36%) persons had prevalent ESRD. During a median follow-up of 4.3 years, 33 (0.57%) subjects developed ESRD. In our analyses, retinopathy was associated with prevalent ESRD (multi-variable adjusted odds ratio [OR], 3.21, 95% confidence interval [CI]: 1.28–8.05) and incident ESRD (multi-variable adjusted hazard ratio [HR], 2.51, 95%CI: 1.14–5.54). This association was largely seen in person with diabetes (HR, 2.60, 95%CI: 1.01–6.66) and not present in persons without diabetes (HR, 1.65, 95%CI: 0.14–18.98). Retinal arteriolar caliber, retinal venular caliber and retinal vascular fractal dimension were not associated with ESRD.ConclusionRetinopathy signs in persons with diabetes are related to an increased risk of ESRD; however, other microvascular changes in the retina are not associated with ESRD.  相似文献   
24.
Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.  相似文献   
25.
Bacillus licheniformis, B. subtilis, B. cereus, Bacillus pumilus and Exiguobacterium sp., which were resistant up to 20 mg Na2SeO3/ml in nutrient broth and 40 mg/ml on nutrient agar plates, were isolated from contaminated soil and water. They grew from 25 to 45°C and pH 5 to 9. They had multiple metal and antibiotic resistances. All strains reduced selenite (SeIV) to elemental selenium (Se0) aerobically with a maximum reduction of 97% by B. pumilus after 144 h with Na2SeO3 at 500 μg/ml.  相似文献   
26.
The regulation of plant signalling responses by Mitogen-Activated Protein Kinases (MAPKs)-mediated protein phosphorylation is well recognized. MAP kinase phosphatases (MKPs) are negative regulators of MAPKs in eukaryotes. We report here the identification and the characterization of TMKP1, the first wheat MKP (Triticum turgidum L. subsp. Durum). Expression profile analyses performed in two durum wheat cultivars showing a marked difference in salt and drought stress tolerance, revealed a differential regulation of TMKP1. Under salt and osmotic stress, TMKP1 is induced in the sensitive wheat variety and repressed in the tolerant one. A recombinant TMKP1 was shown to be an active phosphatase and capable to interact specifically with two wheat MAPKs (TMPK3 and TMPK6). In BY2 tobacco cells transiently expressing GFP::TMKP1, the fusion protein was localized into the nucleus. Interestingly, the deletion of the N-terminal non catalytic domain results in a strong accumulation of the truncated fusion protein in the cytoplasm. In addition, when expressed in BY2 cells, TMPK3 and TMPK6 fused to red fluorescent protein (RFP) were shown to be present predominantly in the nucleus. Surprisingly, when co-expressed with the N-terminal truncated TMKP1 fusion protein; both kinases are excluded from the nuclear compartment and accumulate in the cytoplasm. This strongly suggests that TMKP1 interacts in vivo with TMPK3 and TMPK6 and controls their subcellular localization. Taken together, our results show that the newly isolated wheat MKP might play an active role in modulating the plant cell responses to salt and osmotic stress responses.  相似文献   
27.
Variola virus, the causative agent of smallpox, is a member of the poxvirus family and one of the most virulent human pathogens known. Although smallpox was eradicated almost 30 years ago, it is not understood why the mortality rates associated with the disease were high, why some patients recovered, and what constitutes an effective host response against infection. As variola virus infects only humans, our current understanding of poxvirus infections comes largely from historical clinical data from smallpox patients and from animal studies using closely related viruses such as ectromelia, myxoma and monkeypox. The outcome of an infection is determined by a complex interaction between the type of immune response mounted by the host and by evasion mechanisms that the virus has evolved to subvert it. Disease pathogenesis is also a function of both host and viral factors. Poxviruses are not only cytopathic, causing host tissue damage, but also encode an array of immunomodulatory molecules that affect the severity of disease. The ability of the host to control virus replication is therefore critical in limiting tissue damage. However, in addition to targeting virus, the immune response can inadvertently damage the host to such a degree that it causes illness and even death. There is growing evidence that many of the symptoms associated with serious poxvirus infections are a result of a 'cytokine storm' or sepsis and that this may be the underlying cause of pathology.  相似文献   
28.
29.
Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号