首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2747篇
  免费   133篇
  国内免费   1篇
  2881篇
  2022年   15篇
  2021年   25篇
  2020年   16篇
  2019年   23篇
  2018年   39篇
  2017年   41篇
  2016年   64篇
  2015年   97篇
  2014年   94篇
  2013年   214篇
  2012年   181篇
  2011年   165篇
  2010年   124篇
  2009年   113篇
  2008年   172篇
  2007年   181篇
  2006年   167篇
  2005年   169篇
  2004年   122篇
  2003年   122篇
  2002年   115篇
  2001年   40篇
  2000年   51篇
  1999年   38篇
  1998年   28篇
  1997年   24篇
  1996年   27篇
  1995年   27篇
  1994年   12篇
  1993年   16篇
  1992年   12篇
  1991年   20篇
  1990年   20篇
  1989年   21篇
  1988年   30篇
  1987年   22篇
  1986年   11篇
  1985年   33篇
  1984年   29篇
  1983年   17篇
  1982年   18篇
  1981年   14篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   11篇
  1976年   7篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
排序方式: 共有2881条查询结果,搜索用时 15 毫秒
971.
dNTP pools are quite low in immature oocytes of the starfish, expand during the 1-methyladenine-induced maturational process and thereafter reach a maximal level (approx. 35, 20, 15 and 5 fmoles/egg for dTTP, dCTP, dATP and dGTP, respectively) which is maintained in overmatured eggs. Maturing oocytes were inseminated at the stage just before extrusion of the first polar body and determination of dNTP pools during early embryogenesis showed the same expansion pattern as that of the 1-methyladenine-treated oocytes. Therefore, the increase in dNTP pools during early embryogenesis is dependent on 1-methyladenine (1-MA) but independent of fertilization. Aphidicolin, a specific inhibitor of eukaryotic DNA polymerase alpha, has no effect on dNTP pool size in 1-methyladenine-treated oocytes, but causes considerable expansion of dNTP pools in fertilized eggs which cleave achromosomally in the presence of the drug.  相似文献   
972.
973.
It is known that cell wall remodeling and the salvaging pathway act to compensate for an impaired or a damaged cell wall. Lately, it has been indicated that this mechanism is partly required for resistance to the glucan synthesis inhibitor echinocandin. While cell wall remodeling has been described in mutants of glucan or mannan synthesis, it has not yet been reported in a chitin synthesis mutant. Here, we describe a novel cell wall remodeling and salvaging pathway in chitin synthesis mutants, Δchs3A and Δchs3B, of the pathogenic yeast Candida glabrata. Electron microscopic analysis revealed a thickened mannoprotein layer in Δchs3A cells and a thickened chitin-glucan layer of Δchs3B cells, and it indicated the hypothesis that mannan synthase and chitin-glucan synthase indemnify Δchs3A and Δchs3B cells, respectively. The double-mutant CHS3A and MNN10, encoding α-1,6-mannosyltransferase, showed synergistic stress sensitization, and the Δchs3B strain showed supersensitivity to echinocandins. Hence, these findings support the above hypothesis of remodeling. Furthermore, unlike Δchs3A cells, Δchs3B cells showed supersensitivity to calcineurin inhibitor FK506 and Tor1p kinase inhibitor rapamycin, indicating that the Δchs3B strain uses the calcineurin pathway and a Tor1p kinase for cell wall remodeling.  相似文献   
974.
Tadaishi M  Miura S  Kai Y  Kano Y  Oishi Y  Ezaki O 《PloS one》2011,6(12):e28290

Background

Maximal oxygen uptake (VO2max) predicts mortality and is associated with endurance performance. Trained subjects have a high VO2max due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO2max. There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO2max and exercise capacity.

Methodology/Principal Findings

Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.

Conclusions/Significance

Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.  相似文献   
975.
Summary Suppressor mutants of mei1–102, a mutation in one of the mating type cassette genes (mat2-P) which blocks the progression into meiosis, were isolated and characterized in Schizosaccharomyces pombe. These suppressor mutations conferred either temperature-sensitivity or cold-sensitivity. The growth of these strains is halted and sporulation initiated at the restrictive temperatures, regardless of other conditions usually required for the initiation of meiosis i.e. they sporulate in the presence of a nitrogen source and mating type homozygosity. Their most striking feature is that they can sporulate from the haploid state. The haploidy of these mutants was confirmed by genetical analysis and by measurement of the DNA content of the cells. The mutants are all recessive and define a single gene pat1. The pat1 gene maps very close to the centromere of chromosome II. A meiosis defective mutation in mei5 can suppress the temperature-sensitivity caused by pat1, indicating some interaction between them. Spores produced from a haploid cell have poor viability and appear to contain only 1/2C DNA on average.  相似文献   
976.
Anandamide (AEA) exhibits anti-inflammatory effects. However, its role in the periodontal field remains unknown. Here, we found that gingival crevicular fluid contained a detectable level of AEA. The cannabinoid receptors CB1 and CB2 were expressed by human gingival fibroblasts (HGFs), and markedly upregulated under pathological conditions. AEA significantly reduced the production of pro-inflammatory mediators (IL-6, IL-8 and MCP-1) induced by Porphyromonas gingivalis LPS in HGFs, and this effect was attenuated by AM251 and SR144528, selective antagonists of CB1 and CB2, respectively. Moreover, AEA completely blocked LPS-triggered NF-kappaB activation, implying that AEA may regulate hyperinflammatory reactions in periodontitis.  相似文献   
977.
978.
Overexpression of breast cancer resistance protein (BCRP) ABCG2 reportedly confers cancer cell resistance to camptothecin-based anticancer drugs, such as topotecan and 7-ethyl-10-hydroxycamptothecin (SN-38: the active metabolite of irinotecan). We have recently shown that SN-38-selected PC-6/SN2-5H human lung carcinoma cells overexpressed BCRP with the reduced intracellular accumulation of SN-38 and SN-38-glucuronide (S. Kawabata et al., Biochem. Biophys. Res. Commun. 280, 1216-1223, 2001). In the present study, we have examined whether BCRP transports SN-38 and/or SN-38-glucuronide in vitro, by using plasma membrane vesicles from the parental PC-6 and resistant PC-6/SN2-5H cells, where SN-38 and SN-38-glucuronide accumulation in membrane vesicles was measured by HPLC. Both SN-38 and SN-38-glucuronide were ATP-dependently transported into membrane vesicles prepared from PC-6/SN2-5H cells, whereas no transport activity was observed in membrane vesicles from PC-6 cells. The kinetic parameters of the transport observed in PC-6/SN2-5H vesicles were K(m) = 4.0 microM, V(max) = 714 pmol/mg/min for SN-38 and K(m) = 26 microM, V(max) = 833 pmol/mg/min for SN-38-glucuronide. These findings suggest that BCRP expressed in PC-6/SN2-5H cells transports both SN-38 and SN-38-glucuronide with a higher affinity toward SN-38.  相似文献   
979.
Tk-subtilisin [the mature domain of Pro-Tk-subtilisin in active form (Gly70-Gly398)] from the hyperthermophilic archaeon Thermococcus kodakaraensis is matured from Pro-Tk-subtilisin [a subtilisin homologue from T. kodakaraensis in pro form (Gly1-Gly398)] upon autoprocessing and degradation of propeptide. Pro-Tk-subtilisin is characterized by extremely slow maturation at mild temperatures, but this maturation rate is greatly increased by a single Gly56 → Ser mutation in the propeptide region. To analyze the role of Gly56, which assumes a left-handed conformation, Pro-Tk-subtilisin variants with complete amino acid substitutions at Gly56 were constructed. A comparison of their halo-forming activities suggests that all variants, except for Pro-G56W [Pro-G56X, Pro-Tk-subtilisin with Gly56 → X mutation (X = any amino acid)], mature faster than WT. Pro-G56W and Pro-G56E with the lowest and highest maturation rates, respectively, among 19 variants, as well as WT and Pro-G56S, were overproduced, purified, and characterized. SDS-PAGE analyses and Tk-subtilisin activity assay indicated that their maturation rates increased in the order WT ≤ Pro-G56W < Pro-G56S < Pro-G56E. The propeptides of these variants were also overproduced, purified, and characterized. The stability and inhibitory potency of these propeptides decreased in the order Tk-propeptide [propeptide of Tk-subtilisin (Gly1-Leu69)] ≥ G56W-propeptide > G56S-propeptide > G56E-propeptide, indicating that they are inversely correlated with the maturation rates of Pro7-Tk-subtilisin and its derivatives. The crystal structures of these propeptides determined in complex with S324A-subtilisin indicate that the conformation of the propeptide is altered by the mutation, such that nonglycine residues at position 56 assume a right-handed conformation and hydrophobic interactions at the core region decrease. These results indicate that Gly56 is required in stabilizing the propeptide fold. Stabilization of this fold leads to strong binding of Tk-propeptide to Tk-subtilisin, high resistance of Tk-propeptide to proteolytic degradation, and slow maturation of Pro-Tk-subtilisin.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号