首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3693篇
  免费   215篇
  国内免费   1篇
  2022年   21篇
  2021年   53篇
  2020年   30篇
  2019年   32篇
  2018年   43篇
  2017年   42篇
  2016年   64篇
  2015年   104篇
  2014年   145篇
  2013年   232篇
  2012年   177篇
  2011年   202篇
  2010年   90篇
  2009年   96篇
  2008年   171篇
  2007年   175篇
  2006年   155篇
  2005年   141篇
  2004年   146篇
  2003年   158篇
  2002年   164篇
  2001年   126篇
  2000年   131篇
  1999年   124篇
  1998年   47篇
  1997年   38篇
  1996年   26篇
  1995年   28篇
  1994年   32篇
  1993年   31篇
  1992年   76篇
  1991年   76篇
  1990年   62篇
  1989年   74篇
  1988年   61篇
  1987年   39篇
  1986年   42篇
  1985年   49篇
  1984年   39篇
  1983年   47篇
  1982年   19篇
  1981年   19篇
  1980年   18篇
  1979年   36篇
  1978年   22篇
  1977年   16篇
  1976年   19篇
  1975年   19篇
  1973年   18篇
  1970年   14篇
排序方式: 共有3909条查询结果,搜索用时 15 毫秒
981.
To clarify the mechanism underlying resistance to interferon (IFN) by the hepatitis C virus (HCV) in patients with chronic hepatitis, we attempted to develop an IFN-resistant HCV replicon from the IFN-sensitive 50-1 replicon established previously. By treating 50-1 replicon cells with a prolonged low-dose treatment of IFN-alpha and then transfecting the total RNA derived from the IFN-alpha-treated replicon cells, we successfully obtained four clones (named 1, 3, 4, and 5) of HCV replicon cells that survived against IFN-alpha (200 IU/ml). These cloned cells were further treated with IFN-alpha or IFN-beta (increased gradually to 2000 or 1000 IU/ml, respectively). This led to four replicon cell lines (alphaR series) possessing the IFN-alpha-resistant phenotype and four replicon cell lines (betaR series) possessing the IFN-beta-resistant phenotype. Furthermore, we obtained an additional replicon cell line (alphaRmix) possessing the IFN-alpha-resistant phenotype by two rounds of prolonged treatment with IFN-alpha and RNA transfection as mentioned above. Characterization of these obtained HCV replicon cell lines revealed that the betaR series were highly resistant to both IFN-alpha and IFN-beta, although the alphaR series containing alphaRmix were only partially resistant to both IFN-alpha and IFN-beta. Genetic analysis of these HCV replicons found one common amino acid substitution in the NS4B and several additional amino acid substitutions in the NS5A of the betaR series, suggesting that these genetic alterations are involved in the IFN resistance of these HCV replicons. These newly established HCV replicon cell lines possessing IFN-resistant phenotypes are the first useful tools for understanding the mechanisms by which HCV acquires IFN resistance in vivo.  相似文献   
982.
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that functions as a bioactive lipid molecule. S1P is degraded either by S1P lyase or by S1P phosphohydrolase. The gene encoding mammalian S1P lyase, SPL, has been identified. Here, we characterize the SPL protein in its expression, localization, and topology. The expression levels of the SPL protein correlated well with the dihydrosphingosine-1-phosphate (DHS1P) lyase activity in most tissues. However, liver and heart exhibited high DHS1P lyase activities compared to their SPL protein levels. The SPL mRNA expression was temporally regulated during mouse embryonal development. Immunofluorescence microscopy demonstrated that SPL is localized at the endoplasmic reticulum. Proteinase K digestion studies revealed that the large hydrophilic domain, containing the active site, faces the cytosol. This active site orientation is opposite to that of S1P phosphohydrolase, indicating that the degradation of S1P by two S1P-degrading enzymes occurs in spatially separated sides of the endoplasmic reticulum.  相似文献   
983.
Various day-night rhythms, observed at molecular, cellular, and behavioral levels, are governed by an endogenous circadian clock, predominantly functioning in the hypothalamic suprachiasmatic nucleus (SCN). A class of clock genes, mammalian Period (mPer), is known to be rhythmically expressed in SCN neurons, but the correlation between mPER protein levels and autonomous rhythmic activity in SCN neurons is not well understood. Therefore, we blocked mPer translation using antisense phosphothioate oligonucleotides (ODNs) for mPer1 and mPer2 mRNAs and examined the effects on the circadian rhythm of cytosolic Ca2+ concentration and action potentials in SCN slice cultures. Treatment with mPer2 ODNs (20microM for 3 days) but not randomized control ODNs significantly reduced mPER2 immunoreactivity (-63%) in the SCN. Nevertheless, mPer1/2 ODNs treatment inhibited neither action potential firing rhythms nor cytosolic Ca2+ rhythms. These suggest that circadian rhythms in mPER protein levels are not necessarily coupled to autonomous rhythmic activity in SCN neurons.  相似文献   
984.
The frequency of the gseA gene encoding a glutamic acid-specific serine protease, GluSE, of Staphylococcus epidermidis was investigated. DNA hybridization analysis demonstrated that gseA existed exclusively in S. epidermidis but not in other bacteria examined. A single step PCR assay with a set of designed primers yielded amplification of gseA from all 69 clinical isolates of S. epidermidis taken from patients and healthy adults, whereas production of GluSE was observed in 74% (51/69) of the isolates. Furthermore, none of the 46 clinical isolates of other species of coagulase-negative staphylococci and 45 clinical isolates of Staphylococcus aureus showed amplification, except a Staphylococcus capitis strain. However, this strain was positive for a S. epidermidis-specific DNA region and the DNA sequence of the 16S rRNA gene showed 99% identity with that of S. epidermidis. Therefore, these results indicated that the present PCR assay for gseA was ubiquitous and highly specific for detection of S. epidermidis.  相似文献   
985.
In addition to replicative senescence, normal diploid fibroblasts undergo stress-induced premature senescence (SIPS) in response to DNA damage caused by oxidative stress or ionizing radiation (IR). SIPS is not prevented by telomere elongation, indicating that, unlike replicative senescence, it is triggered by nonspecific genome-wide DNA damage rather than by telomere shortening. ATM, the product of the gene mutated in individuals with ataxia telangiectasia (AT), plays a central role in cell cycle arrest in response to DNA damage. Whether ATM also mediates signaling that leads to SIPS was investigated with the use of normal and AT fibroblasts stably transfected with an expression vector for the catalytic subunit of human telomerase (hTERT). Expression of hTERT in AT fibroblasts resulted in telomere elongation and prevented premature replicative senescence, but it did not rescue the defect in G(1) checkpoint activation or the hypersensitivity of the cells to IR. Despite these remaining defects in the DNA damage response, hTERT-expressing AT fibroblasts exhibited characteristics of senescence on exposure to IR or H(2)O(2) in such a manner that triggers SIPS in normal fibroblasts. These characteristics included the adoption of an enlarged and flattened morphology, positive staining for senescence-associated beta-galactosidase activity, termination of DNA synthesis, and accumulation of p53, p21(WAF1), and p16(INK4A). The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which mediates signaling that leads to senescence, was also detected in both IR- or H(2)O(2)-treated AT and normal fibroblasts expressing hTERT. These results suggest that the ATM-dependent signaling pathway triggered by DNA damage is dispensable for activation of p38 MAPK and SIPS in response to IR or oxidative stress.  相似文献   
986.
The ability of aminoglycoside antibiotics to promote read-through of nonsense mutations has attracted interest in these drugs as potential therapeutic agents in genetic diseases. However, the toxicity of aminoglycoside antibiotics may result in severe side effects during long-term treatment. In this paper, we report that negamycin, a dipeptide antibiotic, also restores dystrophin expression in skeletal and cardiac muscles of the mdx mouse, an animal model of Duchenne muscular dystrophy (DMD) with a nonsense mutation in the dystrophin gene, and in cultured mdx myotubes. Dystrophin expression was confirmed by immunohistochemistry and immunoblotting. We also compared the toxicity of negamycin and gentamicin, and found negamycin to be less toxic. Furthermore, we demonstrate that negamycin binds to a partial sequence of the eukaryotic rRNA-decoding A-site. We conclude that negamycin is a promising new therapeutic candidate for DMD and other genetic diseases caused by nonsense mutations.  相似文献   
987.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   
988.
Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.  相似文献   
989.
Polymorphonuclear leukocytes (PMN) playcrucial roles in protecting hosts against invading microbes and in thepathogenesis of inflammatory tissue injury. Although PMN migrate intomucosal layers of digestive and respiratory tracts, only limitedinformation is available of their fate and function in situ. Wepreviously reported that, unlike circulating PMN (CPMN), PMN in theoral cavity spontaneously generate superoxide radical and nitric oxide (NO) in the absence of any stimuli. When cultured for 12 h under physiological conditions, oral PMN (OPMN) showed morphological changesthat are characteristic of those of apoptosis. Upon agarose gelelectrophoresis, nuclear DNA samples isolated from OPMN revealed ladder-like profiles characteristic of nucleosomal fragmentation. L-cysteine, reduced glutathione (GSH), and herbimycin A, aprotein tyrosine kinase inhibitor, suppressed the activation ofcaspase-3 and apoptosis of OPMN. Neither thiourea, superoxidedismutase (SOD), nor catalase inhibited the activation of caspase-3 and apoptosis. Moreover,N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibitorfor caspase-3, inhibited the fragmentation of DNA. These resultssuggested that oxidative stress and/or tyrosine-kinase-dependent pathway(s) activated caspase-3 in OPMN, thereby inducing their apoptosis.

  相似文献   
990.
Intracellular free Ca(2+) regulates diverse cellular processes, including membrane potential, neurotransmitter release, and gene expression. To examine the cellular mechanisms underlying the generation of circadian rhythms, nucleus-targeted and untargeted cDNAs encoding a Ca(2+)-sensitive fluorescent protein (cameleon) were transfected into organotypic cultures of mouse suprachiasmatic nucleus (SCN), the primary circadian pacemaker. Circadian rhythms in cytosolic but not nuclear Ca(2+) concentration were observed in SCN neurons. The cytosolic Ca(2+) rhythm period matched the circadian multiple-unit-activity (MUA)-rhythm period monitored using a multiple-electrode array, with a mean advance in phase of 4 hr. Tetrodotoxin blocked MUA, but not Ca(2+) rhythms, while ryanodine damped both Ca(2+) and MUA rhythms. These results demonstrate cytosolic Ca(2+) rhythms regulated by the release of Ca(2+) from ryanodine-sensitive stores in SCN neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号