首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1332篇
  免费   62篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   28篇
  2020年   7篇
  2019年   22篇
  2018年   31篇
  2017年   24篇
  2016年   37篇
  2015年   48篇
  2014年   59篇
  2013年   75篇
  2012年   116篇
  2011年   116篇
  2010年   70篇
  2009年   59篇
  2008年   99篇
  2007年   100篇
  2006年   84篇
  2005年   68篇
  2004年   77篇
  2003年   71篇
  2002年   57篇
  2001年   11篇
  2000年   6篇
  1999年   7篇
  1998年   11篇
  1997年   13篇
  1996年   11篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
排序方式: 共有1394条查询结果,搜索用时 31 毫秒
941.

Background

Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood.

Principal Findings

Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction.

Conclusions

We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.  相似文献   
942.
943.
944.
Growth-blocking peptide (GBP) is a hormone-like peptide that suppresses the growth of the host armyworm. Although the 23-amino acid GBP (1–23 GBP) is expressed in nonparasitized armyworm plasma, the parasitization by wasp produces the 28-amino acid GBP (1–28 GBP) through an elongation of the C-terminal amino acid sequence. In this study, we characterized the GBP variants, which consist of various lengths of the C-terminal region, by comparing their biological activities and three-dimensional structures. The results of an injection study indicate that 1–28 GBP most strongly suppresses larval growth. NMR analysis shows that these peptides have basically the same tertiary structures and that the extension of the C-terminal region is disordered. However, the C-terminal region of 1–28 GBP undergoes a conformational transition from a random coiled state to an α-helical state in the presence of dodecylphosphocholine micelles. This suggests that binding of the C-terminal region would affect larval growth activity.Growth-blocking peptide (GBP)2 was initially identified from the hemolymph of armyworm Pseudaletia separata as a 25-amino acid peptide (1–25 GBP) that prevents the onset of pupation of the host by parasitization of wasp Cotesia kariyai (14). Injection of GBP into nonparasitized armyworm larvae early in the last instar delays larval growth and retards pupation for more than a few days. Our previous studies showed that GBP is a hormone-like biogenic peptide of the host armyworm (5, 6). In nonparasitized larvae, the concentrations of GBP were much higher in the early larval stages than in the latter ones. However, parasitization by wasp induces an elevation of GBP in the last larval stages. This elevation was shown to lead to growth retardation via repression of juvenile hormone esterase activity (79). Interestingly, a cDNA analysis indicated that the cDNA encodes a 23-amino acid GBP (1–23 GBP), although GBP purified from parasitized armyworm plasma consists of 25 amino acid residues. GBP was expressed as a 23-residue peptide (1–23 GBP) in nonparasitized armyworm larvae, whereas 1–25 GBP, containing Tyr24 and Gln25, was purified from the parasitized larvae. Moreover, the preliminary peptide sequencing of GBP prepared from parasitized larval hemolymph showed the 26th and 27th residues on rare occasions (Leu and Ile, respectively) (6). On the basis of these results, we concluded that the TAG stop codon for the 24th amino acid was unusually decoded as Tyr upon parasitization by parasitoid wasps (10) and predicted that an intact and mature GBP synthesized in the parasitized armyworm larvae would consist of 28 amino acid residues (1–28 GBP).GBP has multiple functions: adhesion and spreading of a specific class of immune cells (plasmatocytes), proliferation of various cultured cells, and induction of larval paralysis (1113). More than 10 GBP homologous peptides have been identified in Lepidopteran insects, and based on their N-terminal consensus sequences (Glu1-Asn2-Phe3), they have been categorized as the ENF peptide family (14). The tertiary structure of 1–25 GBP consists of a disordered N-terminal region (residues Glu1–Gly6), a well ordered core region (residues Cys7–Thr22) stabilized by a disulfide bond and a short antiparallel β-sheet, and a short unstructured C-terminal region (Phe23–Glu25) (15). Because no GBP receptor or its gene has been isolated yet, the nature of either of them at the cellular and molecular levels is poorly understood at present. In contrast, the relationship between the structure and activity of GBP has been well studied by analyzing the biological activities of several variants of GBP and plasmatocyte-spreading peptide (one of the ENF family peptides). Especially, extensive studies on the N termini (residues 1–6) of GBP and plasmatocyte-spreading peptide demonstrated the importance of Phe3 for exerting their hemocyte stimulating activity, thereby suggesting a possible mechanism for receptor activation that requires binding of the aromatic ring of Phe3 and a closely spaced primary amine with receptor activating properties (1619).In contrast, the C termini of GBP and other ENF peptides have received less attention, because of the weak secondary structure predictions. Therefore, in this study we focused on the C terminus region of GBP and analyzed its contribution to the expression of some biological activities and to the tertiary structure of this peptide. Especially, we prepared GBP with 28 amino acids and characterized the C-terminal region of 1–28 GBP (residues Phe23–Thr28), because we knew that GBP is present as a 23-amino acid peptide in nonparasitized healthy larvae and that GBP with 28 amino acids has been found only in parasitized host larvae. Our results suggest that the elongation of the C-terminal region of Phe23–Thr28 greatly reinforced GBP binding with the membrane. Further, the elongation increased GBP inhibition of larval growth.  相似文献   
945.
946.
Optimization of the lead 2a led to the identification of a novel diarylketoxime class of melanin-concentrating hormone 1 receptor (MCH-1R) antagonists. Our focus was directed toward improvement of hERG activity and metabolic stability. The representative derivative 4b showed potent and dose-dependent body weight reduction in diet-induced obese (DIO) C57BL/6J mice after oral administration. The synthesis and structure–activity relationships of the novel diarylketoxime MCH-1R antagonists are described.  相似文献   
947.
Glycomonomers of sialic acid in which the acetamide group at C-5 was converted into two kinds of CC double bond substituents were prepared and the fully protected glycomonomers were directly polymerized before deprotection steps. Radical polymerization with acrylamide in DMF in the presence of ammonium persulfate and N,N,N’,N’-tetramethylethylenediamine proceeded smoothly and gave corresponding sialopolymers. Interestingly glycomonomers had hemagglutination inhibitory activities not only for H1N1 but also for H3N2 of human influenza virus strains.  相似文献   
948.
A unicellular diazotrophic cyanobacterium strain of Group C, designated TW3, was isolated from the oligotrophic Kuroshio Current of the western Pacific Ocean. To our knowledge, this represents the first successful laboratory culture of a Group C unicellular diazotroph from oceanic water. TW3 cells are green rods, 2.5-3.0 μm in width and 4.0-6.0 μm in length. Phylogenetic analyses of both 16S rRNA and nifH gene fragments indicated that the TW3 sequences were over 98% identical to those of the previously isolated Cyanothece sp. ATCC51142 and Gloeocapsa sp., suggesting that TW3 is a member of the Group C unicellular diazotrophs. In addition, both TW3 and Cyanothece sp. ATCC51142 share morphological characteristics; both strains are sheathless and rod-shaped, display binary fission in a single plane, and possess dispersed thylakoids. TW3 grows aerobically in nitrogen-deficient artificial seawater, and exhibited the highest observed growth rate of 0.035 h(-1) when cultured at 30°C and 140 μmol m(-2) s(-1) of light intensity. The nitrogen fixation rate, when grown optimally using a 12 h/12 h light-dark cycle, was 7.31 × 10(-15) mol N cell(-1) day(-1) . Immunocytochemical staining using Trichodesmium sp. NIBB1067 nitrogenase antiserum revealed the existence of diazotrophic cells sharing morphological characteristics of TW3 in the Kuroshio water from which TW3 was isolated.  相似文献   
949.
Volatile communication allows plants to coordinate systemic induced resistance against herbivores. The mechanisms responsible and nature of the cues remain poorly understood. It is unknown how plants distinguish between reliable cues and misinformation. Previous experiments in which clipped sagebrush branches were bagged suggested that cues are emitted or remain active for up to 3 days. We conducted experiments using plastic bags to block emission of cues at various times following experimental clipping. We also collected headspace volatiles from clipped and unclipped branches for 1 h, transferred those volatiles to assay branches, and incubated the assays for either 1 or 6 h. We found that assay branches that received volatile cues for less than 1 h following clipping of neighbors failed to induce resistance. Assay branches that received volatile cues for more than 1 h experienced reduced herbivory throughout the season. Branches incubated for 6 h with volatiles that had been collected during the first hour following clipping showed induced resistance. These results indicate that sagebrush must receive cues for an extended time (>1 h) before responding; they suggest that the duration of cue reception is an important and overlooked process in communication allowing plants to avoid unreliable, ephemeral cues.  相似文献   
950.
We characterized the RNA elements involved in the packaging of Rift Valley fever virus RNA genome segments, L, M, and S. The 5'-terminal 25 nucleotides of each RNA segment were equally competent for RNA packaging and carried an RNA packaging signal, which overlapped with the RNA replication signal. Only the deletion mutants of L RNA, but not full-length L RNA, were efficiently packaged, implying the possible requirement of RNA compaction for L RNA packaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号