首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   8篇
  77篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   1篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
51.
Diphtheria toxin (DT) is a potent toxin produced by the so-called diphtheria group which includes Corynebacterium diphtheriae (C. diphtheriae), Corynebacterium ulcerans (C. ulcerans), and Corynebacterium pseudotuberculosis (C. pseudotuberculosis). The present investigation is aimed to study in detail the production of DT by C. pseudotuberculosis. Twenty isolates were obtained from sheep diseased with caseous lymphadenitis (CLA) and twenty-six isolates were obtained from 26 buffaloes diseased with oedematous skin disease (OSD). All isolates were identified by standard microbiological and DT production was assayed serologically by modified Elek test and immunoblotting. All sheep isolates were nitrate negative, failed to hydrolyze starch and could not produce DT, while all buffalo isolates (biotype II) revealed positive results and a specific band of 62 kDa, specific to DT, was resulted in all concentrated cell fractions (CF), but was absent from non-toxigenic biotype I isolates. At the same time, another band of 31 kDa specific to the PLD gene was obtained with all isolates of biotype I and II. Moreover, all isolates showed positive synergistic hemolytic activity and antagonistic hemolysis with β-hemolytic Staphylococci. The obtained results also indicated that C. pseudotuberculosis could be classified into two strains; non-toxigenic biotype I strain, which failed to produce DT as well as being negative to nitrate and starch hydrolysis, and toxigenic biotype II strain, which can reduce nitrate, hydrolyze starch as well as produce DT.  相似文献   
52.
Curcumin was investigated as an inhibitor of glycogen synthase kinase-3β (GSK-3β) in an attempt to explain some of its interesting multiple pharmacological effects, such as its anti-diabetic, anti-inflammatory, anti-cancer, anti-malarial and anti-alzheimer's properties. The investigation included simulated docking experiments to fit curcumin within the binding pocket of GSK-3β followed by experimental in vitro and in vivo validations. Curcumin was found to optimally fit within the binding pocket of GSK-3β via several attractive interactions with key amino acids. Experimentally, curcumin was found to potently inhibit GSK-3β (IC50 = 66.3 nM). Furthermore, our in vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice. Our findings strongly suggest that the diverse pharmacological activities of curcumin are at least partially mediated by inhibition of GSK-3β.  相似文献   
53.
54.
55.
L-selectin–PSGL-1-mediated polymorphonuclear (PMN) leukocyte homotypic interactions potentiate the extent of PMN recruitment to endothelial sites of inflammation. Cell–cell adhesion is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. As a first step, a 3-D computational model based on the Immersed Boundary Method is developed to simulate adhesion-detachment of two PMN cells in quiescent conditions. Our simulations predict that the total number of bonds formed is dictated by the number of available receptors (PSGL-1) when ligands (L-selectin) are in excess, while the excess amount of ligands influences the rate of bond formation. Increasing equilibrium bond length results in a higher number of receptor–ligand bonds due to an increased intercellular contact area. On-rate constants determine the rate of bond formation, while off-rates control the average number of bonds by modulating bond lifetimes. Application of an external pulling force leads to time-dependent on- and off-rates and causes bond rupture. Moreover, the time required for bond rupture in response to an external force is inversely proportional to the applied load and decreases with increasing off-rate.  相似文献   
56.
Establishing the mechanisms regulating the autolysis of xylem tracheary elements (TEs) is important for understanding this programmed cell death process. These data demonstrate that two paralogous Arabidopsis thaliana proteases, XYLEM CYSTEINE PROTEASE1 (XCP1) and XCP2, participated in micro-autolysis within the intact central vacuole before mega-autolysis was initiated by tonoplast implosion. The data acquisition was aided by the predictable pattern of seedling root xylogenesis, the availability of single and double total knock-out T-DNA lines, anti-sera that recognized XCP1 and XCP2, and the microwave-assisted processing of whole seedlings prior to immunolabeling and observation in the transmission electron microscope. During secondary wall thickening, XCP1 and XCP2 (in wild type), XCP1 (in xcp2 seedlings) or XCP2 (in xcp1 seedlings) were imported into the TE central vacuole. Both XCP1 and XCP2 heavily labeled dense aggregates of material within the vacuole. However, because of XCP1 deficiency in xcp1 and xcp1 xcp2 TEs, non-degraded cellular remnants first accumulated in the vacuole and then persisted in the TE lumen (longer than in the wild type) after the final mega-autolysis was otherwise complete. This delayed TE clearing phenotype in xcp1 was rescued by complementation with wild-type XCP1. Although TEs in the xcp2 single knock-out cleared comparably with wild type, the non-degraded remnants in xcp1 xcp2 TEs were more densely packed than in xcp1 TEs. Therefore, XCP2 has a minor but distinct role in micro-autolysis. After tonoplast implosion, XCP1 and XCP2 remained associated with disintegrating cellular material as mega-autolysis, aided by additional lytic enzymes, destroyed the bulk of the cellular contents.  相似文献   
57.
The application of microRNAs (miRNAs) as potential biomarkers and therapy targets has been widely investigated in many kinds of cancers. Recent advantages of serum miRNAs open a new realm of possibilities for non‐invasive diagnosis and prognosis of bladder cancer (BC). The aim of our study was to identify plasma miR‐92a, miR‐100 and miR‐143 expression signatures in patients with BC to introduce new markers for establishing BC diagnosis and prognosis. Blood samples were collected from 70 BC patients and 62 controls. An expression of three target miRNAs (miR‐92a, miR‐100 and miR‐143) was measured using quantitative real‐time PCR method. Results were correlated with clinicopathological data and analysed. Plasma levels of miR‐92a, miR‐100 and miR‐143 were significantly lower in BC patients than in control group. Receiver operator characteristic analysis revealed that the sensitivity and specificity values of miR‐92a were 97·1% and 76·7%, respectively, with a cut‐off value of 0·573. The sensitivity and specificity values of miR‐100 were 90% and 66·7%, respectively, with a cut‐off value of 0·644. The sensitivity and specificity values of miR‐143 were 78·6% and 93·3%, respectively, with a cut‐off value of 0·164. This study explores the existence of specific plasma miRNAs as early diagnostic biomarkers for BC in Egyptian patients; and these findings suggest that plasma miR‐92a, miR‐100 and miR‐143 could be promising novel circulating biomarkers in clinical detection of BC. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
58.
59.
60.
microRNAs aberrant behavior in heptocellular carcinoma (HCC) plays a major role in HCC pathogenesis. miR-615-5p expression has never been evaluated in HCC. We showed that miR-615-5p was preferentially expressed in HCC, cirrhotic liver tissues and HCC cell lines, but undetected in normal livers. Forced miR-615-5p expression in HCC cell lines led to significant decrease in cell growth and migration. In-silico predication revealed insulin-like growth factor-II (IGF-II) as a potential downstream target for miR-615-5p. Forcing the expression of miR-615-5p showed downregulation of IGF-II mRNA, as well as inhibition of the luciferase activity in a luciferase reporter vector harboring the IGF-II-3′UTR target sequence. miR-615-5p acts as tumor-suppressor in HCC through targeting IGF-II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号