首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4211篇
  免费   292篇
  国内免费   3篇
  4506篇
  2023年   22篇
  2022年   57篇
  2021年   111篇
  2020年   63篇
  2019年   61篇
  2018年   100篇
  2017年   72篇
  2016年   128篇
  2015年   196篇
  2014年   191篇
  2013年   276篇
  2012年   322篇
  2011年   351篇
  2010年   200篇
  2009年   177篇
  2008年   230篇
  2007年   282篇
  2006年   267篇
  2005年   230篇
  2004年   258篇
  2003年   212篇
  2002年   214篇
  2001年   46篇
  2000年   27篇
  1999年   33篇
  1998年   43篇
  1997年   25篇
  1996年   27篇
  1995年   25篇
  1994年   14篇
  1993年   19篇
  1992年   24篇
  1991年   19篇
  1990年   18篇
  1989年   6篇
  1988年   7篇
  1987年   12篇
  1986年   5篇
  1985年   10篇
  1984年   11篇
  1982年   8篇
  1981年   12篇
  1980年   8篇
  1979年   6篇
  1977年   6篇
  1976年   10篇
  1975年   8篇
  1971年   6篇
  1970年   7篇
  1968年   4篇
排序方式: 共有4506条查询结果,搜索用时 0 毫秒
51.
The process of succinic acid (SA) production represents the combination of microbial synthesis of α-ketoglutaric acid from rapeseed oil by yeast Yarrowia lipolytica VKM Y-2412 and subsequent decarboxylation of α-ketoglutaric acid by hydrogen peroxide to SA that leads to the production of 69.0 g l?1 of SA and 1.36 g l?1 of acetic acid. SA was isolated from the culture broth filtrate in a crystalline form. The SA recovery from the culture filtrate has certain difficulties due to the presence of residual triglycerides of rapeseed oil. The effect of different methods of the culture filtrate treatment and various sorption materials on the coagulation of triglycerides was studied, and as a result, the precipitation of residual triglycerides by acetone was chosen. The subsequent isolation procedures involved the decomposition of H2O2 in the filtrate followed by filtrate bleaching and acidification with a mineral acid, evaporation of filtrate, and SA extraction with ethanol from the residue. The purity of crystalline SA isolated from the culture broth filtrate achieved 97.6–100 %. The product yield varied from 62.6 to 71.6 % depending on the acidity of the supernatant.  相似文献   
52.
Background/AimTo evaluate whether non-closure of the visceral peritoneum after total abdominal hysterectomy (TAH) and bilateral salpingo-oophorectomy (BSO) in patients with uterine corpus carcinoma influences the volume of the small intestine within the irradiated volume during adjuvant radiotherapy or late radiation intestinal toxicity.Materials and methodsA total of 152 patients after TAH + BSO with adjuvant pelvic radiotherapy were studied. The state of peritonealization was retrospectively evaluated based on surgical protocols. The volume of irradiated bowels was calculated by CT-based delineation in a radiotherapy planning system. The influence of visceral peritonealization upon the volume of the small intestine within the irradiated volume and consequent late morbidity was analyzed.ResultsVisceral peritonealization was not performed in 70 (46%) of 152 studied patients. The state of peritonealization did not affect the volume of the irradiated small intestine (p = 0.14). Mean volume of bowels irradiated in patients with peritonealization was 488 cm3 (range 200–840 cm3, median 469 cm3); mean volume of bowels irradiated in patients without peritonealization was 456 cm3 (range 254–869 cm3, median 428 cm3). We did not prove any significant difference between both arms. Nor did we observe any influence of non-peritonealization upon late intestinal morbidity (p = 0.34).ConclusionNon-closure of the visceral peritoneum after hysterectomy for uterine corpus carcinoma does not increase the volume of the small intestine within the irradiated volume, with no consequent intestinal morbidity enhancement.  相似文献   
53.
The protein wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. Mutations in Wfs1 gene cause autosomal recessive disorder Wolfram syndrome (WS). The first symptom of the WS is diabetes mellitus, so accurate diagnosis of the disease as WS is often delayed. In this study we aimed to characterize the role of the Wfs1 deficiency on bioenergetics of muscles. Alterations in the bioenergetic profiles of Wfs1-exon-5-knock-out (Wfs1KO) male rats in comparison with their wild-type male littermates were investigated using high-resolution respirometry, and enzyme activity measurements. The changes were followed in oxidative (cardiac and soleus) and glycolytic (rectus femoris and gastrocnemius) muscles. There were substrate-dependent alterations in the oxygen consumption rate in Wfs1KO rat muscles. In soleus muscle, decrease in respiration rate was significant in all the followed pathways. The relatively small alterations in muscle during development of WS, such as increased mitochondrial content and/or increase in the OxPhos-related enzymatic activity could be an adaptive response to changes in the metabolic environment. The significant decrease in the OxPhos capacity is substrate dependent indicating metabolic inflexibility when multiple substrates are available.  相似文献   
54.
Biochemistry (Moscow) - Neuropeptide galanin and its N-terminal fragments reduce the generation of reactive oxygen species and normalize metabolic and antioxidant states of myocardium in...  相似文献   
55.
Hydrogen peroxide at concentrations from 0.1 to 20 μM enhances phagocytosis and oxidative burst of murine peritoneal macrophages. The activation of these macrophage functions is paralled by prolonged hyperpolarization and a transient increase in cytoplasmic free calcium concentration. All the effects are dose- and time-dependent. The results obtained for H2O2 are compared with those for a natural activator, peptide N-formyl-methionyl-leucly-phenylalanine. The data demonstrate the ability of small doses of hydrogen peroxide to stimulate macrophages through the intracellular mechanisms of ion transduction.  相似文献   
56.
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.  相似文献   
57.
During apoptosis, cytochrome c (cyt c) is released from intermembrane space of mitochondria into the cytosol where it triggers the caspase-dependent machinery. We discovered that cyt c plays another critical role in early apoptosis as a cardiolipin (CL)-specific oxygenase to produce CL hydroperoxides required for release of pro-apoptotic factors [Kagan, V. E., et al. (2005) Nat. Chem. Biol. 1, 223-232]. We quantitatively characterized the activation of peroxidase activity of cyt c by CL and hydrogen peroxide. At low ionic strength and high CL/cyt c ratios, peroxidase activity of the CL/cyt c complex was increased >50 times. This catalytic activity correlated with partial unfolding of cyt c monitored by Trp(59) fluorescence and absorbance at 695 nm (Fe-S(Met(80)) band). The peroxidase activity increase preceded the loss of protein tertiary structure. Monounsaturated tetraoleoyl-CL (TOCL) induced peroxidase activity and unfolding of cyt c more effectively than saturated tetramyristoyl-CL (TMCL). TOCL/cyt c complex was found more resistant to dissociation by high salt concentration. These findings suggest that electrostatic CL/cyt c interactions are central to the initiation of the peroxidase activity, while hydrophobic interactions are involved when cyt c's tertiary structure is lost. In the presence of CL, cyt c peroxidase activity is activated at lower H(2)O(2) concentrations than for isolated cyt c molecules. This suggests that redistribution of CL in the mitochondrial membranes combined with increased production of H(2)O(2) can switch on the peroxidase activity of cyt c and CL oxidation in mitochondria-a required step in execution of apoptosis.  相似文献   
58.
Role of vinculin in regulating focal adhesion turnover   总被引:6,自引:0,他引:6  
Although vinculin (-/-) mouse embryo fibroblasts assemble focal adhesions (FAs), they spread more slowly, less extensively, and close a wound more rapidly than vinculin (+/+) cells. To investigate the structure and dynamics of FAs in these cells, we used real-time interference reflection microscopy (IRM) thus avoiding the need to express exogenous GFP-tagged FA proteins which may be misregulated. This showed that the FAs were smaller, less abundant and turned over more rapidly in vinculin null compared to wild-type cells. Expression of vinculin rescued the spreading defect and resulted in larger and more stable FAs. Phosphatidylinositol 4,5-bisphosphate (PIP2) is thought to play a role in vinculin activation by relieving an intramolecular association between the vinculin head (Vh) and tail (Vt) that masks the ligand binding sites in Vh and Vt. To investigate the role of the vinculin/PIP2 interaction in FA dynamics, we used a vinculin mutant lacking the C-terminal arm (residues 1053-1066) and referred to as the deltaC mutation. This mutation reduced PIP2 binding to a Vt deltaC polypeptide by >90% compared to wild type without affecting binding to Vh or F-actin. Interestingly, cells expressing the vinculin deltaC mutant assembled remarkably stable FAs. The results suggest that vinculin inhibits cell migration by stabilising FAs, and that binding of inositol phospholipids to Vt plays an important role in FA turnover.  相似文献   
59.
A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.  相似文献   
60.
BACKGROUND AND AIMS: To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. METHODS: Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. KEY RESULTS: The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. CONCLUSIONS: The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号