首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4002篇
  免费   288篇
  国内免费   1篇
  2023年   20篇
  2022年   37篇
  2021年   110篇
  2020年   61篇
  2019年   60篇
  2018年   91篇
  2017年   70篇
  2016年   122篇
  2015年   195篇
  2014年   188篇
  2013年   273篇
  2012年   316篇
  2011年   353篇
  2010年   201篇
  2009年   175篇
  2008年   224篇
  2007年   272篇
  2006年   263篇
  2005年   219篇
  2004年   244篇
  2003年   211篇
  2002年   204篇
  2001年   30篇
  2000年   18篇
  1999年   28篇
  1998年   42篇
  1997年   25篇
  1996年   27篇
  1995年   25篇
  1994年   13篇
  1993年   19篇
  1992年   19篇
  1991年   12篇
  1990年   14篇
  1986年   4篇
  1985年   4篇
  1984年   10篇
  1983年   4篇
  1982年   6篇
  1981年   12篇
  1980年   7篇
  1979年   6篇
  1977年   4篇
  1976年   7篇
  1974年   3篇
  1973年   3篇
  1971年   4篇
  1970年   4篇
  1968年   3篇
  1966年   3篇
排序方式: 共有4291条查询结果,搜索用时 15 毫秒
991.
A great majority of salinity studies have dealt with intertidal species. Little is known about the way subtidal animals respond to salinity fluctuations. Even less details are available on invertebrates from the White Sea, which salinity is ca. 25. The heart rate of two subtidal Bivalvia—Hiatella arctica and Modiolus modiolus—exposed to different salinities was recorded. Changes in cardiac activity were monitored for 9 days of the animals’ acclimation to salinities of 15, 20, 30 and 35, and for 4 days of reacclimation (return to the initial salinity of 25). The initial response to salinity change was a significant heart rate reduction. On the other hand, cardiac activity in M. modiolus intensified at salinities of 30 and 35. Reacclimation induced different HR responses: from a decrease to a rise, depending on the species and the salinity applied in the experiment. The differences in responses to salinity are discussed with respect to the morphological and ecological characteristics of the species.  相似文献   
992.
The type specimens of the Jurassic turtles from the Sichuan Basin (China) previously referred to plesiochelyid Plesiochelys are revised, which confirm that they belong to the family Xinjiangchelyidae. The study of a large number of additional shell material shows, as the dominant group, the Xinjiangchelyidae were greatly diversified in the Late Jurassic of the Sichuan Basin. By the absence of mesoplastron and other shell characters, Chengyuchelys baenoides is moved to Xinjiangchelyidae and considered as a valid taxon. Of the xinjiangchelyids from the Late Jurassic of Sichuan Basin, four genera are recognized: Chengyuchelys, Tienfuchelys, Yanduchelys and cf. Protoxinjiangchelys. The phylogenetic analysis results in that Chengyuchelys includes C. baenoides, C. latimarginalis and C. radiplicatus, and Tienfuchelys consists of T. tzuyangensis, T. chungkingensis and T. zigongensis. All xinjiangchelyids from the Sichuan Basin are more primitive than Xinjiangchelys in the plastron sutured to the carapace.  相似文献   
993.
Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined. Here, we show that Microcin C is a subject of specific degradation inside the sensitive cell. The product of degradation, a modified aspartyl-adenylate containing an N-acylphosphoramidate linkage, strongly inhibits translation by blocking the function of aspartyl-tRNA synthetase.  相似文献   
994.
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by impaired social interaction, communication skills, and restricted and repetitive behavior. The genetic causes for autism are largely unknown. Previous studies implicate CACNA1C (L-type Ca(V)1.2) calcium channel mutations in a disorder associated with autism (Timothy syndrome). Here, we identify missense mutations in the calcium channel gene CACNA1H (T-type Ca(V)3.2) in 6 of 461 individuals with ASD. These mutations are located in conserved and functionally relevant domains and are absent in 480 ethnically matched controls (p = 0.014, Fisher's exact test). Non-segregation within the pedigrees between the mutations and the ASD phenotype clearly suggest that the mutations alone are not responsible for the condition. However, functional analysis shows that all these mutations significantly reduce Ca(V)3.2 channel activity and thus could affect neuronal function and potentially brain development. We conclude that the identified mutations could contribute to the development of the ASD phenotype.  相似文献   
995.
A growing body of evidence indicates that small, soluble oligomeric species generated from a variety of proteins and peptides rather than mature amyloid fibrils are inherently highly cytotoxic. Here, we show for the first time that mature amyloid fibrils produced from full-length recombinant mammalian prion protein (rPrP) were highly toxic to cultured cells and primary hippocampal and cerebella neurons. Fibrils induced apoptotic cell death in a time- and dose-dependent manner. The toxic effect of fibrils was comparable with that exhibited by soluble small beta-oligomers generated from the same protein. Fibrils prepared from insulin were not toxic, suggesting that the toxic effect was not solely due to the highly polymeric nature of the fibrillar form. The cell death caused by rPrP fibrils or beta-oligomers was substantially reduced when expression of endogenous PrP(C) was down-regulated by small interfering RNAs. In opposition to the beta-oligomer and amyloid fibrils of rPrP, the monomeric alpha-helical form of rPrP stimulated neurite out-growth and survival of neurons. These studies illustrated that both soluble beta-oligomer and amyloid fibrils of the prion protein are intrinsically toxic and confirmed that endogenously expressed PrP(C) is required for mediating the toxicity of abnormally folded external PrP aggregates.  相似文献   
996.
The coexistence of multiple strains or subtypes of the disease-related isoform of prion protein (PrP) in natural isolates, together with the observed conformational heterogeneity of PrP amyloid fibrils generated in vitro, indicates the importance of probing the conformation of single particles within heterogeneous samples. Using an array of PrP-specific antibodies, we report the development of a novel immunoconformational assay. Uniquely, application of this new technology allows the conformation of multimeric PrP within a single fibril or particle to be probed without pretreatment of the sample with proteinase K. Using amyloid fibrils prepared from full-length recombinant PrP, we demonstrated the utility of this assay to define (i) PrP regions that are surface-exposed or buried, (ii) the susceptibility of defined PrP regions to GdnHCl-induced denaturation, and (iii) the conformational heterogeneity of PrP fibrils as measured for either the entire fibrillar population or for individual fibrils. Specifically, PrP regions 159-174 and 224-230 were shown to be buried and were the most resistant to denaturation. The 132-156 segment of PrP was found to be cryptic under native conditions and solvent-exposed under partially denaturing conditions, whereas the region 95-105 was solvent-accessible regardless of the solvent conditions. Remarkably, a subfraction of fibrils showed immunoreactivity to PrPSc-specific antibodies designated as IgGs 89-112 and 136-158. The immunoreactivity of the conformational epitopes was reduced upon exposure to partially denaturing conditions. Unexpectedly, PrPSc -specific antibodies revealed conformational polymorphisms even within individual fibrils. Our studies provide valuable new insight into fibrillar substructure and offer a new tool for probing the conformation of single PrP fibrils.  相似文献   
997.
Guanylyl cyclase-activating protein 1 (GCAP-1) is an EF-hand protein that activates retinal guanylyl cyclase (RetGC) in photoreceptors at low free Ca2+ in the light and inhibits it in the dark when Ca2+ concentrations rise. We present the first direct evidence that Mg2+-bound form of GCAP-1, not its cation-free form, is the true activator of RetGC-1 under physiological conditions. Of four EF-hand structures in GCAP-1, three bound Ca2+ ions and could exchange Ca2+ for Mg2+. At concentrations of free Ca2+ and Mg2+ typical for the light-adapted photoreceptors, all three metal-binding EF-hands were predominantly occupied by Mg2, and the presence of bound Mg2+ in GCAP-1 was essential for its ability to stimulate RetGC-1. In the Mg2+-bound form of GCAP-1 all three Trp residues became more exposed to the polar environment compared with its apo form. The replacement of Mg2+ by Ca2+ in the EF-hands 2 and 3 further exposed Trp-21 to the solution in a non-metal-binding EF-hand domain 1 that interacts with RetGC. Contrary to that, replacement of Mg2+ by Ca2+ in the EF-hand 4 moved Trp-94 in the entering alpha-helix of the EF-hand 3 back to the non-polar environment. Our results demonstrate that Mg2+ regulates GCAP-1 not only by adjusting its Ca2+ sensitivity to the physiological conditions in photoreceptors but also by creating the conformation required for RetGC stimulation.  相似文献   
998.
The talin rod contains approximately 11 vinculin binding sites (VBSs), each defined by hydrophobic residues in a series of amphipathic helices that are normally buried within the helical bundles that make up the rod. Consistent with this, talin failed to compete for binding of the vinculin Vd1 domain to an immobilized talin polypeptide containing a constitutively active VBS. However, talin did bind to GST-Vd1 in pull-down assays, and isothermal titration calorimetry measurements indicate a K(d) of approximately 9 mum. Interestingly, Vd1 binding exposed a trypsin cleavage site in the talin rod between residues 898 and 899, indicating that there are one or more active VBSs in the N-terminal part of the talin rod. This region comprises a five helix bundle (residues 482-655) followed by a seven-helix bundle (656-889) and contains five VBSs (helices 4, 6, 9, 11, and 12). The single VBS within 482-655 is cryptic at room temperature. In contrast, talin 482-889 binds Vd1 with high affinity (K(d) approximately 0.14 mum), indicating that one or more of the four VBSs within 656-889 are active, and this likely represents the vinculin binding region in intact talin. In support of this, hemagglutinin-tagged talin 482-889 localized efficiently to focal adhesions, whereas 482-655 did not. Differential scanning calorimetry showed a strong negative correlation between Vd1 binding and helical bundle stability, and a 755-889 mutant with a more stable fold bound Vd1 much less well than wild type. We conclude that the stability of the helical bundles that make up the talin rod is an important factor determining the activity of the individual VBSs.  相似文献   
999.
We have developed a mathematical model of adenine nucleotide translocase (ANT) function on the basis of the structural and kinetic properties of the transporter. The model takes into account the effect of membrane potential, pH, and magnesium concentration on ATP and ADP exchange velocity. The parameters of the model have been estimated from experimental data. A satisfactory model should take into account the influence of the electric potential difference on both ternary complex formation and translocation processes. To describe the dependence of translocation constants on electric potential we have supposed that ANT molecules carry charged groups. These groups are shifted during the translocation. Using the model we have evaluated the translocator efficiency and predicted the behavior of ANT under physiological conditions.  相似文献   
1000.
Recently a periplasmic glucose/galactose binding protein, GGRQ26C, immobilized on a gold surface has been used as an active part of a glucose biosensor based on quartz microbalance technique. However the nature of the glucose detection was not clear. Here we have found that the receptor protein film immobilized on the gold surface increases its rigidity when glucose is added, which explains the unexpected detection signal. To study the rigidity change, we developed a new fast and simple method based on using atomic force microscopy (AFM) in tapping mode. The method was verified by explicit measurements of the Young's modulus of the protein film by conventional AFM methods. Since there are a host of receptors that undergo structural change when activated by ligand, AFM can play a key role in the development and/or optimization of biosensors based on rigidity changes in biomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号