首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   21篇
  2021年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   11篇
  2014年   6篇
  2013年   6篇
  2012年   20篇
  2011年   13篇
  2010年   10篇
  2009年   10篇
  2008年   13篇
  2007年   22篇
  2006年   12篇
  2005年   12篇
  2004年   16篇
  2003年   8篇
  2002年   22篇
  2001年   13篇
  2000年   13篇
  1999年   13篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   10篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有317条查询结果,搜索用时 31 毫秒
311.
The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.  相似文献   
312.
Guine pig megakaryocytes were isolated from femoral marrow and cultured in the presence of radioactive amino acids. Radioactivity was incorporated into several proteins including a 42 000 dalton polypeptide ideitified as actin by DNAase agarose affinity chromatography. Quantitative immunonoelectrophoresis of megakaryocytes extract revealed that 3.0% of the total solubilized cellular protein was fibrinogen. Immunoabsorption studies using anti guinea pig fibrinogen beads failed to revealed the presence of newly synthesized radioactive fibrinogen in the cellular extract, however, radioactive actin was detected in the eluates obtained from the immune beads. When guinea pig fibrinogen was clotted with trombin in the presence of radioactive megakaryocyte extract, a complex fromed between a high molecular weight species of fibrin and actin. No actin · fibrinogen complex was detected. The results suggest that actin synthesized by megakartocytes complexes with fibrin formed from a relatively large pool of non-radioactive intracellular fibrinogen.  相似文献   
313.
The metabolism of green algae has been the focus of much research over the last century. These photosynthetic organisms can thrive under various conditions and adapt quickly to changing environments by concomitant usage of several metabolic apparatuses. The main electron coordinator in their chloroplasts, nicotinamide adenine dinucleotide phosphate (NADPH), participates in many enzymatic activities and is also responsible for inter-organellar communication. Under anaerobic conditions, green algae also accumulate molecular hydrogen (H2), a promising alternative for fossil fuels. However, to scale-up its accumulation, a firm understanding of its integration in the photosynthetic apparatus is still required. While it is generally accepted that NADPH metabolism correlates to H2 accumulation, the mechanism of this collaboration is still vague and relies on indirect measurements. Here, we investigated this connection in Chlamydomonas reinhardtii using simultaneous measurements of both dissolved gases concentration, NADPH fluorescence and electrochromic shifts at 520–546 nm. Our results indicate that energy transfer between H2 and NADPH is bi-directional and crucial for the maintenance of redox balance under light fluctuations. At light onset, NADPH consumption initially eventuates in H2 evolution, which initiates the photosynthetic electron flow. Later on, as illumination continues the majority of NADPH is diverted to the Calvin–Benson–Bassham cycle. Dark onset triggers re-assimilation of H2, which produces NADPH and so, enables initiation of dark fermentative metabolism.

Energy transfer between H2 and NADPH is bi-directional and crucial for the maintenance of redox balance under light fluctuations.  相似文献   
314.
315.
Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of this method to differentiate among native and untethered proteins of the same mass.  相似文献   
316.
Rupture of Abdominal aortic aneurysm (AAA) is among the 15 leading causes of death after age 65. Using high frequency ultrasound, we showed that photobiomodulation (PBM) prevents formation and progression of AAA in the angiotensin-II (Ang-II)-infused, apolipoprotein-e-deficient mouse model. In the current study we report that while challenge of porcine aortic Smooth Muscle Cells (SMCs) with Ang-II (1 μM) resulted in a marked decay in mitochondrial membrane potential (MitMP) vs non-challenged cells, treatment with PBM (continuous diode laser, 780 nm, 6.7 mW/cm2, 5 minutes, 2 J/cm2) or pre-incubation with estrogen (50 nM, 1 hour) significantly attenuated this deterioration in MitMP. We also report that PBM and estrogen markedly affected porcine aortic SMC contraction and modified mitochondrial dispersion reflecting important influence on SMC function. These studies provide strong evidence of the important underlying role of mitochondria in the preventive effect of PBM on formation and progression of AAA and its reduced incidence and delayed onset in women.  相似文献   
317.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号