首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   55篇
  2023年   5篇
  2022年   9篇
  2021年   20篇
  2020年   10篇
  2019年   17篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   27篇
  2014年   40篇
  2013年   59篇
  2012年   70篇
  2011年   72篇
  2010年   34篇
  2009年   43篇
  2008年   50篇
  2007年   42篇
  2006年   47篇
  2005年   43篇
  2004年   41篇
  2003年   22篇
  2002年   24篇
  2001年   8篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   7篇
  1979年   2篇
  1978年   1篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   4篇
排序方式: 共有856条查询结果,搜索用时 171 毫秒
71.
Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.  相似文献   
72.
73.
74.
Biometric analysis helps in sex differentiation, understanding development and for studies of avian biology such as foraging ecology, evolutionary ecology, and survivorship. We suggest that biometry can also be a reliable, practical and inexpensive tool to determine the age of nestlings in the field by non-invasive methods. As an example we studied the biometry of wing, culmen, talon, tarsus and body mass of nestling southern Indian Spotted Owlets (Athene brama brama). Based on the growth pattern analysis using logistic growth model, discriminant analysis and CHAID (Chi-squared Automatic Interaction Detection) based decision tree, we show that biometry of nestling Spotted Owlets is an easy, reliable and inexpensive method to determine nestling age and to assess growth rate and relative nutritional status. These biometric parameters also allow us to predict their ability to initiate first flight from the nest site. This method is described here for the first time and we postulate that such charts can be devised for other avian species as well, so as to assist conservation biologists and bird rescuers.  相似文献   
75.
The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant). We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells. Here, we describe the full procedure for performing the infection experiments described in our earlier work. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired.  相似文献   
76.
77.
Role of c-Abl in the DNA damage stress response   总被引:6,自引:0,他引:6  
c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response, c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.  相似文献   
78.
20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1   总被引:6,自引:0,他引:6  
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a very labile protein. ODC is a homodimeric enzyme that undergoes ubiquitin-independent proteasomal degradation via direct interaction with antizyme, a polyamine-induced protein. Binding of antizyme promotes the dissociation of ODC homodimers and marks ODC for degradation by the 26S proteasomes. We describe here an alternative pathway for ODC degradation that is regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). We show that NQO1 binds and stabilizes ODC. Dicoumarol, an inhibitor of NQO1, dissociates ODC-NQO1 interaction and enhances ubiquitin-independent ODC proteasomal degradation. We further show that dicoumarol sensitizes ODC monomers to proteasomal degradation in an antizyme-independent manner. This process of NQO1-regulated ODC degradation was recapitulated in vitro by using purified 20S proteasomes. Finally, we show that the regulation of ODC stability by NQO1 is especially prominent under oxidative stress. Our findings assign to NQO1 a role in regulating ubiquitin-independent degradation of ODC by the 20S proteasomes.  相似文献   
79.
80.
Nectar-feeding birds have remarkably low nitrogen requirements. These may be due either to adaptation to a low-protein diet or simply to feeding on a fluid diet that minimizes metabolic fecal nitrogen losses. We measured minimal nitrogen requirements (MNR) and total endogenous nitrogen loss (TENL) in the omnivorous European starling Sturnus vulgaris, fed on an artificial nectar-like fluid diet of varying concentrations of sugar and protein. The MNR and TENL of the birds were similar and even slightly higher than allometrically expected values for birds of the starlings' mass (140% and 103%, respectively). This suggests that the low measured nitrogen requirements of nectar-feeding birds are not simply the result of their sugary and watery diets but a physiological adaptation to the low nitrogen input. We also measured the effect of water and protein intake on the nitrogenous waste form in the excreta and ureteral urine in European starlings. Neither high water intake nor low protein intake increased the fraction of nitrogen excreted as ammonia. Ammonia was excreted at consistently low levels by the starlings, and its concentration was significantly higher in ureteral urine than in excreta. We hypothesize that ureteral ammonia was reabsorbed in the lower intestine, indicating a postrenal modification of the urine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号