首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   25篇
  国内免费   2篇
  537篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   8篇
  2019年   15篇
  2018年   8篇
  2017年   9篇
  2016年   12篇
  2015年   23篇
  2014年   27篇
  2013年   39篇
  2012年   49篇
  2011年   35篇
  2010年   28篇
  2009年   25篇
  2008年   30篇
  2007年   24篇
  2006年   19篇
  2005年   25篇
  2004年   28篇
  2003年   7篇
  2002年   14篇
  2001年   9篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有537条查询结果,搜索用时 0 毫秒
171.
172.
The first solid‐state solar cells, fabricated ≈140 years ago, were based on selenium; these early studies initiated the modern research on photovoltaic materials. Selenium shows high absorption coefficient and mobility, making it an attractive absorber for high bandgap thin film solar cells. Moreover, the simplicity of a single element absorber, its low‐temperature processing, and intrinsic environmental stability enable the utilization of selenium in extremely cheap and scalable solar cells. In this paper, a detailed study of selenium solar cell fabrication is presented, and the key factors that affect the selenium film morphology and the resulting device efficiency are presented. Specifically, the crystallization process from amorphous film into functional crystalline device is studied. The importance of controlling the process is shown, and methods to align the growth orientation are suggested. Finally, the crystallization process under illumination, which has general importance for the fabrication of thin film photovoltaics, is investigated. Specifically for selenium, the illumination significantly improves the film morphology and leads to device efficiency of 5.2%, with open‐circuit voltage of 0.911 V, short‐circuit current density of 10.2 mA cm?2, and fill factor of 55.0%. These findings form a solid foundation for future improvements of the photovoltaic material and device architecture.  相似文献   
173.
Plant secondary metabolites (SMs) are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (Mr = 150.1 Da) and lactulose (Mr = 342.3 Da). We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; Mr = 194.2 Da), which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f) was nearly three times higher in birds (1.03±0.17, n = 15 in two species) compared to rodents (0.37±0.06, n = 10 in two species) (P<0.001). Surprisingly, the apparent rates of absorption in birds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic demands placed on them to eliminate concomitantly absorbed SMs.  相似文献   
174.
175.
ABSTRACT: BACKGROUND: Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. RESULTS: The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones cooccurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. CONCLUSIONS: L. flavus "husbandry" is characterized by low aphid "livestock" diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population.  相似文献   
176.
177.
178.
Identifying protein–protein interfaces is crucial for structural biology. Because of the constraints in wet experiments, many computational methods have been proposed. Without knowing any information about the partner chains, a new method of predicting protein–protein interaction interface residues purely based on evolutionary information in heterocomplexes is proposed here. Unlike traditional approaches using multiple sequence alignment profiles to represent the conservation level for each residue, we make predictions based on the concept of residue conservation scores so that the dimension of the feature vector for each residue can be drastically reduced, at least 20 times less than conventional methods. Based on the representation approach, a simple linear discriminant function is used to make predictions, so the computational complexity of the whole prediction procedure can also be greatly decreased. By testing our approach on 69 heterocomplex chains, experimental results demonstrate the performance of our approach is indeed superior to current existing methods.  相似文献   
179.
Ubiquitin (Ub) is a small protein (8 kDa) found in all eukaryotic cells, which is conjugated covalently to numerous proteins, tagging them for recognition by a downstream effector. One of the best characterized functions of Ub is targeting proteins for either selective degradation by the proteasome, or for bulk degradation by the autophagy-lysosome system. The executing arm of the UPS is the 26S proteasome, a large multicatalytic complex. While much is known about the synthesis and assembly of the proteasome's subunits, the mechanism(s) underlying its removal has remained obscure, similar to that of many other components of the ubiquitin-proteasome system. Our recent study identified autophagy as the degrading mechanism for the mammalian proteasome, mostly under stress conditions. Amino acid starvation induces specific ubiquitination of certain 19S proteasomal subunits that is essential for its binding to SQSTM1/p62, the protein that shuttles the ubiquitinated proteasome to the autophagic machinery. SQSTM1 delivers ubiquitinated substrates for proteasomal degradation via interaction of its PB1 domain with the 19S proteasomal subunit PSMD4/Rpn10, in situations where the proteasome serves as a “predator." In contrast, we found that the UBA domain of SQSTM1 is essential for its interaction with the ubiquitinated proteasome and its delivery to the autophagosome, rendering the proteasome a “prey.”  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号