首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   62篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   18篇
  2015年   18篇
  2014年   19篇
  2013年   25篇
  2012年   41篇
  2011年   37篇
  2010年   25篇
  2009年   14篇
  2008年   27篇
  2007年   38篇
  2006年   32篇
  2005年   28篇
  2004年   20篇
  2003年   37篇
  2002年   41篇
  2001年   6篇
  2000年   6篇
  1999年   12篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   8篇
  1980年   5篇
  1977年   3篇
  1976年   6篇
  1974年   7篇
  1973年   3篇
  1970年   3篇
  1968年   7篇
  1967年   6篇
  1963年   5篇
  1958年   3篇
  1935年   3篇
  1928年   4篇
排序方式: 共有657条查询结果,搜索用时 46 毫秒
41.
Delany I  Spohn G  Rappuoli R  Scarlato V 《Gene》2002,283(1-2):63-69
The major chaperone genes of Helicobacter pylori are negatively regulated by HspR, a homologue of the repressor of the dnaK operon of Streptomyces coelicolor. Using an in vitro selection and amplification approach we identified two new chromosomal binding sites of the HspR protein. Both binding sites were characterized by footprinting analysis with purified HspR protein. Intriguingly, these HspR binding sites are located at the 3prime prime or minute ends of two genes coding for predicted proteins with functions unrelated to those of chaperones. This suggests that H. pylori HspR may regulate the expression of genes encoding proteins with diverse functions. Nucleotide sequence alignment of HspR-binding sites highlights conserved nucleotides extending outside the previously proposed consensus binding sequence with structural features predicting geometry of HspR binding as an oligomer.  相似文献   
42.
43.
The Rho family GTPases are pivotal for T cell signaling; however, the regulation of these proteins is not fully known. One well studied regulator of Rho GTPases is Vav1; a hematopoietic cell-specific guanine nucleotide exchange factor critical for signaling in T cells, including stimulation of the nuclear factor of activated T cells (NFAT). Surprisingly, Vav1 associates with Ly-GDI, a hematopoietic cell-specific guanine nucleotide dissociation inhibitor of Rac. Here, we studied the functional significance of the interaction between Vav1 and Ly-GDI in T cells. Upon organization of the immunological synapse, both Ly-GDI and Vav1 relocalize to T cell extensions in contact with the antigen-presenting cell. Ly-GDI is phosphorylated on tyrosine residues following T cell receptor stimulation, and it associates with the Src homology 2 region of an adapter protein, Shc. In addition, the interaction between Ly-GDI and Vav1 requires tyrosine phosphorylation. Overexpression of Ly-GDI alone is inhibitory to NFAT stimulation and calcium mobilization. However, when co-expressed with Vav1, Ly-GDI enhances Vav1 induction of NFAT activation, phospholipase Cgamma phosphorylation, and calcium mobilization. Moreover, Ly-GDI does not alter the regulation of these phenomena when coexpressed with oncogenic Vav1. Since oncogenic Vav1 does not bind Ly-GDI, this suggests that the functional cooperativity of Ly-GDI and Vav1 is dependent upon their association. Thus, our data suggest that the interaction of Vav1 and Ly-GDI creates a fine tuning mechanism for the regulation of intracellular signaling pathways leading to NFAT stimulation.  相似文献   
44.
Id2 negatively regulates B cell differentiation in the spleen   总被引:2,自引:0,他引:2  
Early stages of B cell development occur in the bone marrow, resulting in formation of immature B cells. These immature cells migrate to the spleen where they differentiate into mature (B2 or marginal zone (MZ)) cells. This final maturation step is crucial for B cells to become responsive to Ags and to participate in the immune response. Id2 is a helix-loop-helix protein that lacks a DNA-binding region; and therefore, inhibits basic helix-loop-helix functions in a dominant negative manner. In this study, we show that Id2 expression is down-regulated during differentiation of immature B cells into mature B2 and MZ B cells. The high levels of Id2 expressed in the immature B cells result in inhibition of E2A binding activity to an E2 box site. Moreover, mice lacking Id2 show an elevation in the proportion of mature B2 cells in the spleen, while the MZ population in these mice is almost absent. Thus, Id2 acts as a regulator of the differentiation of immature B cells occurring in the spleen, it negatively controls differentiation into mature B2 cells while allowing the commitment to MZ B cells. In the absence of Id2 control, the unregulated differentiation is directed toward the mature B2 population.  相似文献   
45.
Structure determination of T cell protein-tyrosine phosphatase   总被引:2,自引:0,他引:2  
Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130-132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme.  相似文献   
46.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   
47.
Preferential Th1 immune response in invariant chain-deficient mice   总被引:3,自引:0,他引:3  
MHC class II molecules associate with the invariant chain (Ii) molecule during biosynthesis. Ii facilitates the folding of class II molecules, interferes with their peptide association, and is involved in MHC class II transport. In this study, we have investigated the in vitro and in vivo immune response of Ii-deficient mice (Ii(-/-)). Our results have demonstrated that CD4(+) T cells from Ii(-/-) mice proliferate normally in vitro after in vivo immunization with protein Ags. However, cytokine secretion profiles of Ag-primed CD4(+) T cells from Ii(-/-) mice differ from CD4(+) T cells from wild-type mice. Whereas cells from wild-type mice secrete IFN-gamma and IL-4, cells from Ii(-/-) mice secrete mostly IFN-gamma. Moreover, Ii(-/-) mice exhibit a normal Th1 response in the delayed-type hypersensitivity and trinitrobenzene sulfonic acid colitis models; however, these mice lack an in vivo Th2 response, as demonstrated in the asthma model. Therefore, we suggest that defective Ag presentation in Ii(-/-) mice leads selectively to a Th1 effector response.  相似文献   
48.
49.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   
50.
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号