首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4139篇
  免费   213篇
  国内免费   1篇
  4353篇
  2023年   14篇
  2022年   26篇
  2021年   60篇
  2020年   47篇
  2019年   38篇
  2018年   71篇
  2017年   60篇
  2016年   90篇
  2015年   148篇
  2014年   177篇
  2013年   269篇
  2012年   283篇
  2011年   281篇
  2010年   157篇
  2009年   164篇
  2008年   264篇
  2007年   256篇
  2006年   240篇
  2005年   230篇
  2004年   262篇
  2003年   217篇
  2002年   206篇
  2001年   61篇
  2000年   53篇
  1999年   69篇
  1998年   45篇
  1997年   48篇
  1996年   29篇
  1995年   40篇
  1994年   40篇
  1993年   30篇
  1992年   33篇
  1991年   36篇
  1990年   24篇
  1989年   25篇
  1988年   26篇
  1987年   28篇
  1986年   21篇
  1985年   19篇
  1984年   18篇
  1983年   18篇
  1982年   16篇
  1981年   12篇
  1980年   9篇
  1979年   13篇
  1976年   7篇
  1975年   7篇
  1974年   8篇
  1970年   8篇
  1969年   7篇
排序方式: 共有4353条查询结果,搜索用时 15 毫秒
81.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   
82.
Heparan sulfate (HS) interacts with numerous growth factors, morphogens, receptors, and extracellular matrix proteins. Disruption of HS synthetic enzymes causes perturbation of growth factor signaling and malformation in vertebrate and invertebrate development. Our previous studies show that the O‐sulfation patterns of HS are essential for the specific binding of growth factors to HS chains, and that depletion of O‐sulfotransferases results in remarkable developmental defects in Drosophila, zebrafish, chick, and mouse. Here, we show that inhibition of chick HS‐6‐O‐sulfotransferases (HS6ST‐1 and HS6ST‐2) in the prospective limb region by RNA interference (RNAi) resulted in the truncation of limb buds and reduced Fgf‐8 and Fgf‐10 expressions in the apical ectodermal ridge and in the underlying mesenchyme, respectively. HS6ST‐2 RNAi resulted in a higher frequency of limb truncation and a more marked change in both Fgf‐8 and Fgf‐10 expressions than that achieved with HS6ST‐1 RNAi. HS6ST‐1 RNAi and HS6ST‐2 RNAi caused a significant but distinct reduction in the levels of different 6‐O‐sulfation in HS, possibly as a result of their different substrate specificities. Our data support a model where proper levels and patterns of 6‐O‐sulfation of HS play essential roles in chick limb bud development.  相似文献   
83.
The interaction of sesamin, one of the most abundant lignans in sesame seed, and types of dietary fats affecting hepatic fatty acid oxidation was examined in rats. Rats were fed purified experimental diets supplemented with 0% or 0.2% sesamin (1:1 mixture of sesamin and episesamin), and containing 8% of either palm, safflower or fish oil for 15 days. Among the groups fed sesamin-free diets, the activity of various fatty acid oxidation enzymes was higher in rats fed fish oil than in those fed palm and safflower oils. Dietary sesamin increased enzyme activities in all groups of rats given different fats. The extent of the increase depended on dietary fat type, and a diet containing sesamin and fish oil in combination appeared to increase many of these parameters synergistically. In particular, the peroxisomal palmitoyl-CoA oxidation rate and acyl-CoA oxidase activity levels were much higher in rats fed sesamin and fish oil in combination than in animals fed sesamin and palm or safflower oil in combination. Analyses of mRNA levels revealed that a diet containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes and PEX11alpha, a peroxisomal membrane protein, in a synergistic manner while it increased the gene expression of mitochondrial fatty acid oxidation enzymes and microsomal cytochrome P-450 IV A1 in an additive manner. It was concluded that a diet containing sesamin and fish oil in combination synergistically increased hepatic fatty acid oxidation primarily through up-regulation of the gene expression of peroxisomal fatty acid oxidation enzymes.  相似文献   
84.
In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.  相似文献   
85.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   
86.
87.
88.
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase–related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell–cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell–cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho–ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42–MRCK pathway and suppression of the Rho–ROCK pathway.  相似文献   
89.
Oxidation of methyl trimethyl glucopyranosides which were obtained by methanolysis of permethylated cellulose, laminarin, and dextran, was performed with dimethyl sulfoxide (DMSO)-phosphorus pentoxide to afford the corresponding ulose derivatives, methyl 2,3,6-tri-O-methyl-d-xylo-hexopyranosid-4-ulose, methyl 2,4,6-tri-O-methyl-d-ribo-hexopyranosid-3-ulose, and methyl 2,3,4-tri-O-methyl-d-gluco-hexodialdo-l,5-pyranoside, respectively, in good or moderate yields. As a new type of derivatives for the linkage analysis of polysaccharides the chromatographic and spectrometric properties of 2,4-dinitrophenylhydrazone of the ulose derivatives were investigated.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号