首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1397篇
  免费   70篇
  1467篇
  2022年   18篇
  2021年   32篇
  2020年   15篇
  2019年   12篇
  2018年   27篇
  2017年   20篇
  2016年   42篇
  2015年   73篇
  2014年   77篇
  2013年   107篇
  2012年   112篇
  2011年   109篇
  2010年   59篇
  2009年   45篇
  2008年   83篇
  2007年   84篇
  2006年   65篇
  2005年   66篇
  2004年   63篇
  2003年   44篇
  2002年   50篇
  2001年   17篇
  2000年   19篇
  1999年   9篇
  1998年   16篇
  1997年   10篇
  1996年   15篇
  1995年   4篇
  1994年   7篇
  1993年   9篇
  1992年   7篇
  1991年   17篇
  1990年   8篇
  1989年   11篇
  1988年   7篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   14篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1949年   3篇
  1919年   2篇
排序方式: 共有1467条查询结果,搜索用时 0 毫秒
61.
Biodiversity and Conservation - The complex biology and specialized relationships between orchids and both fungi and pollinators can complicate orchid conservation and management. Some terrestrial...  相似文献   
62.
Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.  相似文献   
63.
64.

Background

Early infant diagnosis (EID) of HIV is a key-point for the implementation of early HAART, associated with lower mortality in HIV-infected infants. We evaluated the EID process of HIV according to national recommendations, in urban areas of Cameroon.

Methods/Findings

The ANRS12140-Pediacam study is a multisite cohort in which infants born to HIV-infected mothers were included before the 8th day of life and followed. Collection of samples for HIV DNA/RNA-PCR was planned at 6 weeks together with routine vaccination. The HIV test result was expected to be available at 10 weeks. A positive or indeterminate test result was confirmed by a second test on a different sample. Systematic HAART was offered to HIV-infected infants identified. The EID process was considered complete if infants were tested and HIV results provided to mothers/family before 7 months of age. During 2007–2009, 1587 mother-infant pairs were included in three referral hospitals; most infants (n = 1423, 89.7%) were tested for HIV, at a median age of 1.5 months (IQR, 1.4–1.6). Among them, 51 (3.6%) were HIV-infected. Overall, 1331 (83.9%) completed the process by returning for the result before 7 months (median age: 2.5 months (IQR, 2.4–3.0)). Incomplete process, that is test not performed, or result of test not provided or provided late to the family, was independently associated with late HIV diagnosis during pregnancy (adjusted odds ratio (aOR) = 1.8, 95%CI: 1.1 to 2.9, p = 0.01), absence of PMTCT prophylaxis (aOR = 2.4, 95%CI: 1.4 to 4.3, p = 0.002), and emergency caesarean section (aOR = 2.5, 95%CI: 1.5 to 4.3, p = 0.001).

Conclusions

In urban areas of Cameroon, HIV-infected women diagnosed sufficiently early during pregnancy opt to benefit from EID whatever their socio-economic, marital or disclosure status. Reduction of non optimal diagnosis process should focus on women with late HIV diagnosis during pregnancy especially if they did not receive any PMTCT, or if complications occurred at delivery.  相似文献   
65.
Cardiac sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is central to the maintenance of normal Ca2+ homeostasis and contraction. Studies indicate that the Ca2+-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca2+ binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met369 antibody identified a novel calpain cleavage site at Met369. Engineering NCX1-Met369 into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met369 inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met369 cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.  相似文献   
66.
Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs) are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP). We tested miRSNP-125a (rs12975333 G>T), miRSNP-223 (rs34952329 *>T), miRSNP-196a-2 (rs11614913 C>T) and miRSNP-146a (rs2910164 G>C). Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091). We replicated this finding showing that the C-allele was over-transmitted (p = 0.003) using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100∶1) was able to induce miR-146a expression in THP-1 (p<0.05). Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001). Interestingly, carriers of the risk variant (C-allele) produce higher levels of mature miR-146a in nerves (p = 0.04). From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies) and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively), which is consistent with an immunomodulatory role of this miRNA in leprosy.  相似文献   
67.
Incorporation of the glycolipid trehalose 6,6'-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4 degrees C and 25 degrees C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-gamma cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-gamma was identified as CD4 T cells.  相似文献   
68.
Neuroglycan C (NGC) is a transmembrane-type chondroitin sulfate proteoglycan that is exclusively expressed in the central nervous system. We report that the recombinant ectodomain of NGC core protein enhances neurite outgrowth from rat neocortical neurons in culture. Both protein kinase C (PKC) inhibitors and phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite outgrowth in a dose-dependent manner, suggesting that NGC promotes neurite outgrowth via PI3K and PKC pathways. The active sites of NGC for neurite outgrowth existed in the epidermal growth factor (EGF)-like domain and acidic amino acid (AA)-domain of the NGC ectodomain. The EGF-domain caused cells to extend preferentially one neurite from a soma, whereas the AA-domain caused several neurites to develop. The EGF-domain also enhanced neurite outgrowth from GABA-positive neurons, but the AA-domain did not. These results suggest that the EGF-domain and AA-domain have distinct functions in terms of neuritogenesis. From these findings, NGC can be considered to be involved in neuritogenesis in the developing central nervous system.  相似文献   
69.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein–protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.Francisella tularensis is responsible for the disease tularamia in a large number of animal species. This highly infectious bacterial pathogen can be transmitted to humans in numerous ways (1, 2, 3), including direct contact with sick animals, inhalation, ingestion of contaminated water or food, or by bites from ticks, mosquitoes, or flies. Four different subspecies (subsp.) of F. tularensis that differ in virulence and geographic distribution exist, designated subsp. tularensis (type A), subsp. holarctica (type B), subsp. Novicida, and subsp. mediasiatica, respectively. F. tularensis subsp. tularensis is the most virulent subspecies causing a severe disease in humans, whereas F. tularensis subsp. holarctica causes a similar disease but of less severity (4). Because of its high infectivity and lethality, F. tularensis is considered a potential bioterrorism agent (5).F. tularensis is able to survive and to replicate in the cytoplasm of a variety of infected cells, including macrophages. To resist this stressful environment, the bacterium must have developed stress resistance mechanisms, most of which are not yet well characterized. We recently reported the identification of a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis (6). This locus was designated moxR because the first gene FTL_0200, encodes a protein belonging to the AAA+ ATPase of the MoxR family ((7) and references therein). The data obtained in that first study had led us to suggest that the F. tularensis MoxR-like protein might constitute, in combination with other proteins of the locus, a chaperone complex contributing to F. tularensis pathogenesis.To further validate this hypothesis and expand our initial observations, we here decided to perform tandem affinity purification (TAP),1 using a dual affinity tag approach coupled to mass spectroscopy analyses (8), to identify proteins interacting in vivo with three proteins encoded by the proximal portion of the moxR locus. For this, we chose as baits: the MoxR-like protein (FTL_0200) and two proteins bearing distinct motifs possibly involved in protein–protein interactions, FTL_0201 (Von Willebrand Factor Type A domain, or VWA) and FTL_0205 (tetratrichopeptide repeat or TPR). The three proteins were designated here for simplification, MoxR, VWA1, and TPR1; and the corresponding genes moxR, vwa1, and tpr1, respectively.VWA domains are present in all three kingdoms of life. They consist of a β-sheet sandwiched by multiple α helices. Frequently, VWA domain-containing proteins function in multiprotein complexes (9). TPR typically contain 34 amino acids. Many three-dimensional structures of TPR domains have been solved, revealing amphipathic helical structures (10). TPR-containing proteins are also found in all kingdoms of life. They can be involved in a variety of functions, and generally mediate protein–protein interactions. In the past few years, several TPR-related proteins have been shown to be involved in virulence mechanisms in pathogenic bacteria ((11) and references therein).Our proteomic approach allowed us to identify a series of protein interactants for each of the three moxR-encoded proteins. Remarkably, the protein TPR1 interacted with all the subunits of the pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (OGDH) complexes. Furthermore, inactivation of tpr1 also severely impaired the activities of these two enzymes. Inactivation of tpr1 affected bacterial resistance to several stresses (and in particular oxidative stress), intramacrophagic bacterial multiplication and bacterial virulence in the mouse model. Functional implications and possible relationship between bacterial metabolism, stress defense, and bacterial virulence are discussed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号