首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   75篇
  2022年   18篇
  2021年   35篇
  2020年   17篇
  2019年   12篇
  2018年   27篇
  2017年   23篇
  2016年   44篇
  2015年   74篇
  2014年   82篇
  2013年   115篇
  2012年   124篇
  2011年   118篇
  2010年   65篇
  2009年   52篇
  2008年   89篇
  2007年   95篇
  2006年   73篇
  2005年   69篇
  2004年   65篇
  2003年   47篇
  2002年   52篇
  2001年   17篇
  2000年   23篇
  1999年   9篇
  1998年   16篇
  1997年   13篇
  1996年   16篇
  1995年   5篇
  1994年   7篇
  1993年   9篇
  1992年   7篇
  1991年   17篇
  1990年   8篇
  1989年   11篇
  1988年   7篇
  1987年   11篇
  1986年   7篇
  1985年   8篇
  1984年   14篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1949年   3篇
  1934年   2篇
  1919年   2篇
排序方式: 共有1572条查询结果,搜索用时 15 毫秒
41.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
42.
43.
44.
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.  相似文献   
45.
46.
Yoichi Ida  Akinori Kidera 《Proteins》2013,81(10):1699-1708
Inositol 1,4,5‐trisphosphate receptor (InsP3R) is an intracellular Ca2+‐release channel activated by binding of inositol 1,4,5‐trisphosphate (InsP3) to the InsP3 binding core (IBC). Structural change in the IBC upon InsP3 binding is the key process in channel pore opening. In this study, we performed molecular dynamics (MD) simulations of the InsP3‐free form of the IBC, starting with removal of InsP3 from the InsP3‐bound crystal structure, and obtained the structural ensemble of the InsP3‐free form of the IBC. The simulation revealed that the two domains of the IBC largely fluctuate around the average structure with the hinge angle opened 17° more than in the InsP3‐bound form, and the twist angle rotated by 45°, forming interdomain contacts that are different from those in the bound form. The InsP3 binding loop was disordered. The InsP3‐free form thus obtained was reproduced four times in simulations started from a fully extended configuration of the two domains. Simulations beginning with the fully extended form indicated that formation of a salt bridge between Arg241 and Glu439 is crucial for stabilizing the closed form of the two domains. Mutation of Arg241 to Gln prevented formation of the compact structure by the two domains, but the fully flexible domain arrangement was maintained. Thus, the Arg241‐Glu439 salt bridge determines the flexibility of the InsP3‐free form of the IBC.Proteins 2013; 81:1699–1708. © 2013 Wiley Periodicals, Inc.  相似文献   
47.
In situ ellipsometry was employed to study adsorption from human palatal saliva (HPalS) in terms of dependence on surface wettability and saliva concentration ( ? 1%). Adsorbed amounts, kinetics, and elutability with buffer and sodium dodecyl sulphate (SDS) were determined. The low-molecular weight protein content of bulk HPalS was also investigated using two-dimensional gel electrophoresis, and this revealed the presence of a large group of proteins < 100 kDa in size. Adsorption to pure (hydrophilic) and methylated (hydrophobized) silica surfaces revealed that the total adsorbed amounts were greater on hydrophobized silica. Below concentrations of 0.5 and 0.25% saliva, adsorption was concentration dependent on hydrophobized and hydrophilic surfaces, respectively. The initial adsorption ( ? 30 min) was faster on hydrophobized surfaces. Addition of SDS removed more material than buffer rinsing on both surfaces. Analysis of the adsorption kinetics indicated that the presence of low-molecular weight proteins plays a role in adsorption from HPalS.  相似文献   
48.
Coatline A ( 1 ) and α‐epi‐coatline A ( 4 ) co‐occur in the trunk extract of Andira coriacea. Inspection of their chiroptical properties led to intriguing results. After a careful examination of the experimental data used for the previously reported absolute configuration of these compounds, some uncertainties were identified. A combined theoretical approach including conformational analyses and calculation of electronic circular dichroism (ECD) spectra, in addition with experimental data obtained for schoepfin A ( 5 ) and the new schoepfin D ( 6 ) isolated from Senna quinquangulata, allowed the revision of the absolute configuration of coatlines A ( 1 ) and B ( 2 ). Chirality 25:180–184, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
49.
The breakthrough in derivation of human‐induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC‐derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC‐NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non‐migratory hiPSC‐NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down‐regulated in migratory hiPSC‐NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC‐NSCs toward cancer cells, and that inhibition of its activity or down‐regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell‐mediated cancer therapy.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号