首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5727篇
  免费   374篇
  国内免费   1篇
  6102篇
  2023年   20篇
  2022年   26篇
  2021年   60篇
  2020年   43篇
  2019年   40篇
  2018年   93篇
  2017年   99篇
  2016年   156篇
  2015年   285篇
  2014年   293篇
  2013年   383篇
  2012年   462篇
  2011年   406篇
  2010年   242篇
  2009年   195篇
  2008年   344篇
  2007年   345篇
  2006年   297篇
  2005年   271篇
  2004年   244篇
  2003年   243篇
  2002年   259篇
  2001年   92篇
  2000年   95篇
  1999年   73篇
  1998年   43篇
  1997年   29篇
  1996年   28篇
  1995年   33篇
  1994年   37篇
  1993年   31篇
  1992年   48篇
  1991年   54篇
  1990年   53篇
  1989年   46篇
  1988年   41篇
  1987年   54篇
  1986年   35篇
  1985年   43篇
  1984年   51篇
  1983年   33篇
  1982年   21篇
  1981年   28篇
  1980年   24篇
  1979年   21篇
  1978年   24篇
  1974年   22篇
  1973年   36篇
  1972年   24篇
  1971年   23篇
排序方式: 共有6102条查询结果,搜索用时 15 毫秒
141.
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, β-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.  相似文献   
142.
143.
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a β-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with β-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/β-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.T-cell receptor (TCR) stimulation alone is insufficient for activation of T cells, and sustainable T-cell immune responses require a second signal in addition to the TCR-mediated signal. The second signal is typically elicited by ligands B7-1 or B7-2 on antigen-presenting cells engaging the coreceptor CD28 to prevent anergy and apoptosis and enhancing interleukin-2 (IL-2) production and clonal expansion (4). Although CD28 plays a central role in T-cell activation in vivo (5), relatively little is known about the molecular basis for the increased efficacy of T-cell activation upon TCR and CD28 costimulation. Involvement of Lck, Itk, phosphatidylinositol 3-kinase (PI3K), SLP-76, Vav-1, and phospholipase C-γ (PLC-γ) has, however, been reported (43). CD28-mediated signals are transmitted via a short intracellular stretch in the receptor containing a conserved YMNM motif (32). Phosphorylation of Tyr173 in this motif by Lck and Fyn following CD28 ligation is key to efficient signal transduction (41), generating a binding site for the SH2 domain of the p85 regulatory subunit of PI3K (37, 40). CD28 may also contribute to TCR-dependent PI3K activity without recruiting PI3K directly (18). Whether engagement of CD28 alone can also induce PI3K activity has been a matter of controversy. However, recent reports confirming phosphorylation of the protein kinase B (PKB) substrate glycogen synthase kinase 3 (GSK3) upon CD28 ligation has demonstrated that this is indeed the case (6, 15). In addition, CD28 can recruit growth factor receptor-bound protein 2 (Grb2), and such association of Grb2 occurs via the phosphorylated YMNM motif as well as via the C-terminal PXXP motif (22, 35). The PXXP motif also binds and regulates Src family kinases (SFKs) (21, 47), and knock-in mice mutated in this motif were recently reported to have impaired IL-2 secretion (16).Ligation of the TCR induces cyclic AMP (cAMP) production (27). However, the significance of this observation is still not fully understood, as it is well established that cAMP potently inhibits T-cell function and proliferation (2, 45, 46, 50). The spatiotemporal dynamics of the activation-induced cAMP gradient also are not completely appreciated. We have previously shown that cAMP is rapidly produced in lipid rafts following engagement of the TCR in primary T cells (3). This activates a pool of PKA type I targeted to rafts by association with the anchoring protein Ezrin, forming part of a supramolecular complex where Ezrin, EBP50, and PAG provide a scaffold that is able to coordinate PKA phosphorylation and activation of Csk, thereby inhibiting T-cell activation (44, 50). In addition, we have demonstrated that CD3/CD28 costimulation leads to recruitment of type 4 phosphodiesterase (PDE4) isoforms to rafts, resulting in degradation of the TCR-induced cAMP pool (3). Thus, we envisage that TCR-induced cAMP production constitutes a negative feedback loop capable of abrogating T-cell activation in the absence of a second signal. In order then to allow full T-cell activation to proceed, cAMP-mediated inhibition must be lifted. This appears to occur in the presence of a costimulus involving CD28 acting to trigger recruitment of PDE4 to lipid rafts, thereby degrading cAMP at this spatially critical location and resulting in an overriding positive feed-forward signal rather than the negative feedback loop activated from the TCR. In addition, a recent publication by Conche et al. has also found a possible stimulatory effect of cAMP, as the paper surprisingly showed that a transient cAMP increase shortly after TCR triggering may potentiate the calcium component of the TCR signaling. This could constitute a positive feed-forward in addition to the negative feedback signal by cAMP (12).Spatial organization and recruitment of mediators of specific pathways as outlined above are essential to ensure signaling specificity and amplification. Among the many protein scaffolds linking effector molecules into linear pathways, β-arrestins have been reported to confer cross talk with a growing list of molecules important in cellular trafficking and signal transduction, including Src family members and mitogen-activated protein (MAP) kinases (reviewed in reference 14). The arrestins were first identified as having a role in desensitization of G protein-coupled receptors (GPCRs) (9); later, they were discovered to be involved in receptor internalization by interacting with clathrin and AP-2, thereby bringing activated receptors to clathrin-coated pits for endocytosis (19, 26). A role for β-arrestin in the spatially localized degradation of cAMP by scaffolding PDE4 isoforms to the proximity of cAMP generation at the plasma membrane has also been suggested (3, 7, 30, 38).In the present study, we uncover a novel pathway that defines how T-cell costimulation elicits recruitment of PDE4 to lipid rafts to overcome cAMP-mediated inhibition of T-cell activation. This pathway is initiated by CD28 engagement leading to PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production and resulting in recruitment of a supramolecular complex of PKB/β-arrestin/PDE4 targeted to the plasma membrane due to sequestration via the PKB plextrin homology (PH) domain. Functionally, this pathway is essential for CD28 costimulation to strengthen and sustain T-cell immune responses.  相似文献   
144.
There is an urgent need for biomarkers to enable early diagnosis of Alzheimer''s disease (AD). It has recently been shown that a variant within the clusterin gene is associated with increased risk of AD and plasma levels of clusterin have been found to be associated with the risk of AD. We, therefore, investigated the diagnostic value of clusterin by quantifying clusterin using an ELISA in plasma from 171 controls, 127 patients with AD, 82 patients with other dementias and 30 patients with depression. We observed similar plasma clusterin levels in controls, AD patients and patients with other dementias, suggesting that plasma clusterin levels have no diagnostic value for AD. There was a slight, but significant, increase in plasma clusterin in patients with depression compared to all other groups tested, which may warrant further investigation.  相似文献   
145.
Gaucher disease (GD) is the most common form of sphingolipidosis and is caused by a defect of beta-glucosidase (beta-Glu). A carbohydrate mimic N-octyl-beta-valienamine (NOV) is an inhibitor of beta-Glu. When applied to cultured GD fibroblasts with F213I beta-Glu mutation, NOV increased the protein level of the mutant enzyme and up-regulated cellular enzyme activity. The maximum effect of NOV was observed in F213I homozygous cells in which NOV treatment at 30 microM for 4 days caused a approximately 6-fold increase in the enzyme activity, up to approximately 80% of the activity in control cells. NOV was not effective in cells with other beta-Glu mutations, N370S, L444P, 84CG and RecNciI. Immunofluorescence and cell fractionation showed localization of the F213I mutant enzyme in the lysosomes of NOV-treated cells. Consistent with this, NOV restored clearance of 14C-labeled glucosylceramide in F213I homozygous cells. F213I mutant beta-Glu rapidly lost its activity at neutral pH in vitro and this pH-dependent loss of activity was attenuated by NOV. These results suggest that NOV works as a chemical chaperone to accelerate transport and maturation of F213I mutant beta-Glu and may suggest a therapeutic value of this compound for GD.  相似文献   
146.
Carcinoembryonic antigen (CEA)–related cell adhesion molecule 1 (CAM1 [CEACAM1]) mediates homophilic cell adhesion and regulates signaling. Although there is evidence that CEACAM1 binds and activates SHP-1, SHP-2, and c-Src, knowledge about the mechanism of transmembrane signaling is lacking. To analyze the regulation of SHP-1/SHP-2/c-Src binding, we expressed various CFP/YFP-tagged CEACAM1 isoforms in epithelial cells. The supramolecular organization of CEACAM1 was examined by cross-linking, coclustering, coimmunoprecipitation, and fluorescence resonance energy transfer. SHP-1/SHP-2/c-Src binding was monitored by coimmunoprecipitation and phosphotyrosine-induced recruitment to CEACAM1-L in cellular monolayers. We find that trans-homophilic CEACAM1 binding induces cis-dimerization by an allosteric mechanism transmitted by the N-terminal immunoglobulin-like domain. The balance of SHP-2 and c-Src binding is dependent on the monomer/dimer equilibrium of CEACAM1-L and is regulated by trans-binding, whereas SHP-1 does not bind under physiological conditions. CEACAM1-L homodimer formation is reduced by coexpression of CEACAM1-S and modulated by antibody ligation. These data suggest that transmembrane signaling by CEACAM1 operates by alteration of the monomer/dimer equilibrium, which leads to changes in the SHP-2/c-Src–binding ratio.  相似文献   
147.
148.
Malignant mesothelioma is a tumour originating from mesothelial cells, and it exhibits epithelial, fibrous, or biphasic differentiation. This tumour is highly resistant to therapy, and presence of a sarcomatous growth pattern has been associated with worse prognosis. A mesothelioma cell line with retained ability to differentiate into either epithelial or fibroblast-like phenotype was subjected to subtractive hybridisation in order to identify the genes coupled to tumour cell differentiation. Nine genes were found to be selectively overexpressed in the epithelial sub-line, compared to only two genes in the fibroblast-like phenotype. This may support the idea that the sarcomatous phenotype represents a less differentiated tumour. One of the genes that is differentially expressed by the epithelial cells was thioredoxin, a small redox-active protein associated with cell-growth and differentiation. This overexpression was accompanied by increased protein levels both intracellularly and in the medium. Thioredoxin is reduced by the selenoprotein thioredoxin reductase and NADPH. The activity of this enzyme was high in both cell sub-lines but induced 2-fold in the epithelially-differentiated cells. Overexpression of thioredoxin might be a factor behind the poor prognosis and reduced responsiveness to therapy of mesotheliomas. Epithelial differentiation in this cell line has previously been linked to increased synthesis of heparan sulphate proteoglycans. The possible formation of complexes including thioredoxin, thioredoxin reductase, and heparan sulphate proteoglycans might play a role in the local control of cell growth and differentiation.  相似文献   
149.
150.
A Ciona intestinalis cDNA clone that encodes a protein highly homologous to other tyrosinases was isolated. Northern blot analysis showed that expression of Ciona tyrosinase starts at the early neurula stage and continues throughout the tail-bud and tadpole larval stages. The earliest tyrosinase expression was detected, by in situ hybridization, at the neural plate stage, in pigment precursor cells located along the two neural folds, in the animal region of the embryo. In the course of embryonic development the strong hybridization signal was always localized, within the rostral part of the developing brain, in the pigment precursor cells and was later detected in the otolith and ocellus. These results are discussed in relation to tyrosinase as an early marker of neural induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号