首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2254篇
  免费   115篇
  国内免费   1篇
  2022年   8篇
  2021年   29篇
  2020年   18篇
  2019年   22篇
  2018年   19篇
  2017年   25篇
  2016年   43篇
  2015年   59篇
  2014年   74篇
  2013年   188篇
  2012年   123篇
  2011年   144篇
  2010年   84篇
  2009年   68篇
  2008年   125篇
  2007年   135篇
  2006年   128篇
  2005年   139篇
  2004年   113篇
  2003年   124篇
  2002年   150篇
  2001年   29篇
  2000年   20篇
  1999年   28篇
  1998年   40篇
  1997年   20篇
  1996年   25篇
  1995年   17篇
  1994年   31篇
  1993年   23篇
  1992年   21篇
  1991年   21篇
  1990年   22篇
  1989年   21篇
  1988年   17篇
  1987年   11篇
  1986年   16篇
  1985年   12篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   20篇
  1980年   18篇
  1979年   9篇
  1978年   9篇
  1977年   7篇
  1976年   10篇
  1975年   10篇
  1974年   11篇
  1971年   8篇
排序方式: 共有2370条查询结果,搜索用时 203 毫秒
131.
132.
To elucidate the dynamical mechanisms of the sinoatrial (SA) node pacemaker activity, we investigated the roles of L-type Ca2+ (ICa,L) and delayed-rectifier K+ (IKr) currents in pacemaking by stability and bifurcation analyses of our rabbit SA node model (Kurata Y, Hisatome I, Imanishi S, and Shibamoto T. Am J Physiol Heart Circ Physiol 283: H2074-H2101, 2002). Equilibrium points (EPs), periodic orbits, stability of EPs, and Hopf bifurcation points were calculated as functions of conductance or gating time constants of the currents for constructing bifurcation diagrams. Structural stability (robustness) of the system was also evaluated by computing stability and dynamics during applications of constant bias currents (Ibias). Blocking ICa,L or IKr caused stabilization of an EP and cessation of pacemaking via a Hopf bifurcation. The unstable zero-current potential region determined with Ibias applications, where spontaneous oscillations appear, shrunk and finally disappeared as ICa,L diminished, but shrunk little when IKr was eliminated. The reduced system, including no time-dependent current except ICa,L, exhibited pacemaker activity. These results suggest that ICa,L is responsible for EP instability and pacemaker generation, whereas IKr is not necessarily required for constructing a pacemaker cell system. We further explored the effects of various K+ currents with different kinetics on stability and dynamics of the model cell. The original IKr of delayed activation and inward rectification appeared to be most favorable for generating large-amplitude oscillations with stable frequency, suggesting that IKr acts as an oscillation amplifier and frequency stabilizer. IKr may also play an important role in preventing bifurcation to quiescence of the system.  相似文献   
133.
Zinc-coproporphyrin III (Zincphyrin) acts efficiently as a photodynamic therapy (PDT) agent in mice, while it shows no tumor cell-killing activity in vitro and has a high LD50 (low toxicity) in mice. It appears to have advantages over other porphyrins as a practical PDT reagent. In order to examine the action mechanism of Zincphyrin in PDT, we evaluated the photochemical characteristics of Zincphyrin by measurement of the near-infrared emission at 1268 nm, which provides direct evidence for formation of 1O2. Intense emission was observed in the presence of Zincphyrin, and was completely inhibited by NaN3, a 1O2 scavenger. Based on a quenching study, the rate constant of the reaction of 1O2 with NaN3 was determined to be 1.5–3.5 M–1 s–1, which is close to the reported value (3.8×108 M–1 s–1). The intensity of the 1O2-specific emission was proportional to both the laser power and the concentration of Zincphyrin. The fluorescence quantum yield of Zincphyrin was 0.004 in phosphate buffer (100 mM, pH 7.4), which indicates that the excited state decays via other pathway(s) faster than through the fluorescence emission pathway. The lifetime of the triplet state of Zincphyrin (210 s) was relatively long compared to that of other porphyrins, such as hematoporphyrin (Hp) (40 s), coproporphyrin I (50 s), or coproporphyrin III (36 s). These results demonstrate the photodynamic generation of 1O2 by Zincphyrin.  相似文献   
134.
In the heart, insulin stimulates a variety of kinase cascades and controls glucose utilization. Because insulin is able to activate Akt and inactivate AMP-activated protein kinase (AMPK) in the heart, we hypothesized that Akt can regulate the activity of AMPK. To address the potential existence of this novel signaling pathway, we used a number of experimental protocols to activate Akt in cardiac myocytes and monitored the activation status of AMPK. Mouse hearts perfused in the presence of insulin demonstrated accelerated glycolysis and glucose oxidation rates as compared with non-insulin-perfused hearts. In addition, insulin caused an increase in Akt phosphorylation and a decrease in AMPK phosphorylation at its major regulatory site (threonine 172 of the alpha catalytic subunit). Transgenic mice overexpressing a constitutively active mutant form of Akt1 displayed decreased phosphorylation of cardiac alpha-AMPK. Isolated neonatal cardiac myocytes infected with an adenovirus expressing constitutively active mutant forms of either Akt1 or Akt2 also suppressed AMPK phosphorylation. However, Akt-dependent depression of alpha-AMPK phosphorylation could be overcome in the presence of the AMPK activator, metformin, suggesting that an override mechanism exists that can restore AMPK activity. Taken together, this study suggests that there is cross-talk between the AMPK and Akt pathways and that Akt activation can lead to decreased AMPK activity. In addition, our data suggest that the ability of insulin to inhibit AMPK may be controlled via an Akt-mediated mechanism.  相似文献   
135.
This study initially confirmed that, among prostaglandins (PGs) produced in bone, only PGE(2) has the potency to stimulate osteoclastogenesis and bone resorption in the mouse coculture system of osteoblasts and bone marrow cells. For the PGE(2) biosynthesis two isoforms of the terminal and specific enzymes, membrane-associated PGE(2) synthase (mPGES) and cytosolic PGES (cPGES) have recently been identified. In cultured mouse primary osteoblasts, both mPGES and cyclooxygenase-2 were induced by the bone resorptive cytokines interleukin-1, tumor necrosis factor-alpha, and fibroblast growth factor-2. Induction of mPGES was also seen in the mouse long bone and bone marrow in vivo by intraperitoneal injection of lipopolysaccharide. In contrast, cPGES was expressed constitutively both in vitro and in vivo without being affected by these stimuli. An antisense oligonucleotide blocking mPGES expression inhibited not only PGE(2) production, but also osteoclastogenesis and bone resorption stimulated by the cytokines, which was reversed by addition of exogenous PGE(2). We therefore conclude that mPGES, which is induced by and mediates the effects of bone resorptive stimuli, may make a target molecule for the treatment of bone resorptive disorders.  相似文献   
136.
Double-labeling immunohistochemical studies staining with anti-ubiquitin and anti-phosphoserine antibodies and application of an enzymatic dephosphorylation technique reveal neuronal inclusions and affected nuclei to be aberrantly phosphorylated in brain tissues with patients with glutamine-repeat diseases. Regional distribution of the phosphorylated nuclei in neurons correlates with the pathology. To identify the target nuclear protein, transient expression of Huntington's disease exon 1 gene containing an expanded glutamine repeat was generated in a cell culture and nuclear inclusions were isolated with a fluorescence-activated cell sorting system. Immunoblotting studies of the aggregated nuclear proteins using anti-phosphoserine antibody demonstrate the protein of the aberrant phosphorylation as histone H3. The immunoblots of control and diseased brain tissues demonstrate that the phosphorylation of histone H3 is commonly increased in the diseased brains. Aberrant phosphorylation of histone H3 is surmised to be a shared pathological process in glutamine-repeat diseases.  相似文献   
137.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF(2alpha) only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF(2alpha) from endogenous AA, even though significant increase in PGF(2alpha) production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF(2alpha)-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   
138.
Recent studies showed that the function of some amino acids is not only nutritional but also pharmacological. However, the effects of amino acids on liver fibrosis and hepatic stellate cell (HSC) remain unclear. In this research, as a result of screening of amino acids using liver fibrosis induced by DMN administration, L-cysteine was selected as a suppressor of liver fibrosis. Furthermore, the number of activated HSCs, which increased in the fibrotic liver after DMN administration, was decreased in L-cysteine-fed rats. Treatment of freshly isolated HSCs with L-cysteine resulted in inhibition of the increase in smooth muscle alpha-actin (alphaSMA) expression by HSCs and BrdU incorporation into the activated HSCs. These findings suggest that L-cysteine is effective against liver fibrosis. The mechanism of inhibition of fibrosis in the liver is surmized to be direct inhibition of activated HSC proliferation and HSC transformation by L-cysteine.  相似文献   
139.
Despite the heteroplasmic lower population of mitochondrial (mt) DNA deletion, mtDNA deletion is significantly related to the loss of atrial adenine nucleotides. To elucidate its mechanism, we examined the frequency of a 7.4-kb mtDNA deletion, the concentration of adenine nucleotides, and the activity of AMP catabolic enzymes in 10 human right atria obtained from cardiac surgery, using quantitative PCR, HPLC, and immunoprecipitations. The atrial concentrations of ATP, ADP, AMP, and the total adenine nucleotides were significantly lower in patients with deletion than those in patients without deletion, despite the lower frequency of their deletion. The activities of total AMP deaminase (AMPD), liver-type (AMPD 2), and heart-type isoform (AMPD 3) were significantly higher in patients with deletion than in patients without deletion, although there was no significant difference in the cytosolic 5(')-nucleotidase among them. In conclusion, mtDNA deletion coordinately induces AMP deaminase to contribute to the loss of atrial adenine nucleotides through degrading AMP excessively.  相似文献   
140.
The iron storage protein, apoferritin, has a cavity in which iron is oxidized and stored as a hydrated oxide core. The size of the core is about 7 nm in diameter and is regulated by the cavity size. The cavity can be utilized as a nanoreactor to grow inorganic crystals. We incubated apoferritin in nickel or chromium salt solutions to fabricate hydroxide nanoparticles in the cavity. By using a solution containing dissolved carbon dioxide and by precisely controlling the pH, we succeeded in fabricating nickel and chromium cores. During the hydroxylation process of nickel ions a large portion of the apoferritin precipitated through bulk precipitation of nickel hydroxide. Bulk precipitation was suppressed by adding ammonium ions. However, even in the presence of ammonium ions the core did not form using a degassed solution. We concluded that carbonate ions were indispensable for core formation and that the ammonium ions prevented precipitation in the bulk solution. The optimized condition for nickel core formation was 0.3 mg/mL horse spleen apoferritin and 5 mM ammonium nickel sulfate in water containing dissolved carbon dioxide. The pH was maintained at 8.65 using two buffer solutions: 150 mM HEPES (pH 7.5) and 195 mM CAPSO (pH 9.5) with 20 mM ammonium at 23 degrees C. The pH had not changed after 48 h. After 24 h of incubation, all apoferritins remained in the supernatant and all of them had cores. Recombinant L-ferritin showed less precipitation even above a pH of 8.65. A chromium core was formed under the following conditions: 0.1 mg/mL apoferritin, 1 mM ammonium chromium sulfate, 100 mM HEPES (pH 7.5) with a solution containing dissolved carbon dioxide. About 80% of the supernatant apoferritin (0.07 mg/mL) formed a core. In nickel and chromium core formation, carbonate ions would play an important role in accelerating the hydroxylation in the apoferritin cavity compared to the bulk solution outside.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号