首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2112篇
  免费   107篇
  国内免费   1篇
  2220篇
  2021年   27篇
  2020年   20篇
  2019年   18篇
  2018年   14篇
  2017年   25篇
  2016年   39篇
  2015年   52篇
  2014年   71篇
  2013年   177篇
  2012年   123篇
  2011年   141篇
  2010年   79篇
  2009年   63篇
  2008年   123篇
  2007年   127篇
  2006年   121篇
  2005年   135篇
  2004年   108篇
  2003年   119篇
  2002年   142篇
  2001年   21篇
  2000年   12篇
  1999年   21篇
  1998年   39篇
  1997年   20篇
  1996年   24篇
  1995年   16篇
  1994年   30篇
  1993年   22篇
  1992年   13篇
  1991年   18篇
  1990年   20篇
  1989年   17篇
  1988年   14篇
  1987年   9篇
  1986年   12篇
  1985年   9篇
  1984年   15篇
  1983年   15篇
  1982年   14篇
  1981年   20篇
  1980年   16篇
  1979年   9篇
  1978年   8篇
  1977年   7篇
  1976年   10篇
  1975年   10篇
  1974年   10篇
  1972年   7篇
  1971年   8篇
排序方式: 共有2220条查询结果,搜索用时 15 毫秒
81.
Cathepsin E (CE) was purified from the foregut of Xenopus laevis tadpoles as a mature dimeric form. The purified enzyme was a typical CE among aspartic proteinases with respect to pH dependence of proteolytic activity, susceptibility to pepstatin, and having N-linked high-mannose type oligosaccharide chains. We isolated two cDNAs for the CE (CE1 and CE2) from adult stomach. The amino acid sequence of the N-terminal region of the purified CE coincided with the corresponding sequence predicted from CE1. Northern blot analysis and in situ hybridization were performed. The CE1 mRNA was highly expressed in surface mucous cells and gland cells constituting the larval epithelium of the foregut of pro-metamorphic tadpoles. As metamorphosis began and progressed, CE1 mRNA drastically decreased in amount, and subsequently both CE1 and CE2 mRNAs gradually increased. The increase in CE2 mRNA was detected shortly after the increase in CE1 mRNA. The decrease in CE1 expression correlated with degeneration of the larval type epithelium, while the increases in both CE1 and CE2 expression correlated with formation of the adult type epithelium. Thus, cathepsin E gene expression was differentially regulated during metamorphosis-associated remodeling of the larval to adult type epithelium in stomach.  相似文献   
82.
Five different types of pollen tetrads were detected from the short and long stamens of the male and hermaphrodite flowers of the androdioecious species, Mimosa pigra L. Light (LM) and scanning electron microscopes (SEM) were used in this study to redescribe the pollen forms and to identify the various pollen types encountered. An identification key and relative percentages of these pollen types were also presented. The study showed that the long stamens of the male flowers and those of the hermaphrodite ones have five (I, II, III, IV and V) and two (I and V) pollen types respectively, whereas the short stamens of both male and hermaphrodite flowers have only one pollen type (type I). We report here the first incidence of intra‐specific pollen polymorphism in androdioecious species.  相似文献   
83.
Abstract

Five 3′,5′-di-O-acylribonucleosides were converted into the corresponding β-D-arabinofuranosyl derivatives through DMSO-oxidation followed by NaBH4-reduction and deacylation with NaOMe-MeOH.  相似文献   
84.
Members of the Src family of tyrosine kinases function to phosphorylate focal adhesion (FA) proteins. To explore the overlapping functions of Src kinases, we have targeted Csk, a negative regulator of the Src family, to FA structures. Expression of FA-targeted Csk (FA-Csk) effectively reduced the active form (nonphosphorylated at the C-terminal regulatory tyrosine) of Src members in the cell. We found that fibroblasts expressing FA-Csk lost integrin-mediated adhesion. Activated Src (SrcY529F) as well as activation of putative Src signaling mediators (Fak, Cas, Crk/CrkL, C3G, and Rap1) blocked the effect of FA-Csk in a manner dependent on Rap1. SrcY529F also inhibited activated Ras-induced cell detachment but failed to rescue detachment caused by an activated mutant of Raf1 (Raf-BXB) that Rap1 cannot inhibit. Although normal spreading onto fibronectin was restored by the beta(1) integrin affinity-activating antibody TS2/16 in cells expressing FA-Csk or Raf-BXB, FAs were lost in these cells. On the other hand, Rap1 activation could restore FAs in cells expressing FA-Csk. Activation of the executioner caspase, caspase 3, is essential for many forms of apoptosis. While a caspase 3 inhibitor (Z-DEVD-FMK) inhibited cell detachment triggered by activation of caspase 8, this inhibitor had no effect on cell detachment caused by FA-Csk. Likewise, overexpression of an activated Akt made cells resistant to the effect of caspase 8 activation, but not to the effect of FA-Csk. It is therefore likely that the primary cause of cell rounding and detachment induced by FA-Csk involves dysfunction of FAs rather than caspase-mediated apoptosis that may result from possible loss of survival signals mediated by Src family kinases. We suggest that endogenous Src family kinases are essential for FAs through activation of Rap1 in fibroblasts.  相似文献   
85.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   
86.
Using the teleost Oryzias latipes (medaka), we isolated three embryonic globin cDNAs (em.alpha-0, em.alpha-1, and em.beta-1) from the embryos 5 days after fertilization (at 30 degrees C) and two adult globin cDNAs (ad.alpha-1 and ad.beta-1) from the kidney of the fully-grown adult fish, and predicted their amino acid sequences. Molecular phylogenetic analysis showed that the embryonic globins were highly homologous in amino acid sequence to the embryonic globins previously identified in rainbow trout and zebrafish, and that they formed a monophyletic group among the teleostean globin molecules. They were clearly discriminated from the adult globin of the medaka. RT-PCR analysis showed that the embryonic globin mRNAs were intensely expressed in stage 30 and 38 embryos and in young fish 30 days after hatching. The level of expression decreased drastically after the young fish stage, and was low in fully-grown adult fish. The adult alpha globin mRNA ad.alpha-1 was scarcely expressed in the embryos, and the level of expression gradually increased in young to fully-grown adult fish. Unexpectedly, the adult beta globin mRNA ad.beta-1 was expressed throughout life, from the early embryonic stage to the fully-grown adult stage. This expression profile was quite different from that of the rainbow trout previously investigated. Some globins of the medaka were expressed both in primitive hematopoiesis and in definitive hematopoiesis.  相似文献   
87.
Mesenchymal stem cells (MSCs) are increasingly being reported as occurring in a variety of tissues. Although MSCs from human bone marrow are relatively easy to harvest, the isolation of rodent MSCs is more difficult, thereby limiting the number of experiments in vivo. To determine a suitable cell source, we isolated rat MSCs from bone marrow, synovium, periosteum, adipose, and muscle and compared their properties for yield, expansion, and multipotentiality. After two passages, the cells in each population were CD11b (−), CD45 (−), and CD90 (+). The colony number per nucleated cells derived from synovium was 100-fold higher than that for cells derived from bone marrow. With regard to expansion potential, synovium-derived cells were the highest in colony-forming efficiency, fold increase, and growth kinetics. An in vitro chondrogenesis assay demonstrated that the pellets derived from synovium were heavier, because of their greater production of cartilage matrix, than those from other tissues, indicating their superiority in chondrogenesis. Synovium-derived cells retained their chondrogenic potential after a few passages. The Oil Red-O positive colony-rate assay demonstrated higher adipogenic potential in synovium- and adipose-derived cells. Alkaline phosphatase activity was greater in periosteum- and muscle-derived cells during calcification. The yield and proliferation potential of rat MSCs from solid tissues was much better than those from bone marrow. In particular, synovium-derived cells had the greatest potential for both proliferation and chondrogenesis, indicating their usefulness for cartilage study in a rat model. This study was supported in part by grants from the Japan Latest Osteoarthritis Society and from the Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone in Tokyo Medical and Dental University (to T.M.), and by the Japan Society for the Promotion of Science (grant no. 18591657 to I.S.). Recombinant human bone morphogenetic protein-2 was kindly provided by Astellas Pharma.  相似文献   
88.
Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism.  相似文献   
89.
Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.  相似文献   
90.
PACE4 is a member of the mammalian subtilisin-like proprotein convertase (SPC) family, which contribute to the activation of transforming growth factor (TGF) beta family proteins. We previously reported that PACE4 is highly expressed in syncytiotrophoblasts of human placenta [Tsuji et al. (2003) BIOCHIM: Biophys. Acta 1645, 95-104]. In this study, the regulatory mechanism for PACE4 expression in placenta was analyzed using a human placental choriocarcinoma cell line, BeWo cells. Promoter analysis indicated that an E-box cluster (E4-E9) in the 5'-flanking region of the PACE4 gene acts as a negative regulatory element. The binding of human achaete-scute homologue 2 (Hash-2) to the E-box cluster was shown by gel mobility-shift assay. The overexpression of Hash-2 caused a marked decrease in PACE4 gene expression. When BeWo cells were grown under low oxygen (2%) conditions, the expression of Hash-2 decreased, while that of PACE4 increased. In both cases, other SPCs, such as furin, PC5/6, and PC7/8, were not affected. Further, PACE4 expression was found to be developmentally regulated in rat placenta. By in situ hybridization, Mash-2 (mammalian achaete-scute homologue 2) mRNA was found to be expressed in the spongiotrophoblast layer where PACE4 was not expressed. In contrast, the PACE4 mRNA was expressed mainly in the labyrinthine layer where Mash-2 was not detected. These results suggest that PACE4 expression is down-regulated by Hash-2/Mash-2 in both human and rat placenta and that many bioactive proteins might be regulated by PACE4 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号