首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   99篇
  国内免费   1篇
  2022年   7篇
  2021年   27篇
  2020年   18篇
  2019年   18篇
  2018年   14篇
  2017年   23篇
  2016年   38篇
  2015年   51篇
  2014年   67篇
  2013年   172篇
  2012年   116篇
  2011年   133篇
  2010年   77篇
  2009年   61篇
  2008年   119篇
  2007年   122篇
  2006年   117篇
  2005年   131篇
  2004年   105篇
  2003年   114篇
  2002年   138篇
  2001年   16篇
  2000年   10篇
  1999年   19篇
  1998年   39篇
  1997年   19篇
  1996年   24篇
  1995年   16篇
  1994年   30篇
  1993年   20篇
  1992年   11篇
  1991年   18篇
  1990年   17篇
  1989年   17篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   15篇
  1983年   15篇
  1982年   13篇
  1981年   20篇
  1980年   16篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   10篇
  1974年   10篇
  1971年   7篇
排序方式: 共有2130条查询结果,搜索用时 109 毫秒
181.
Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway.  相似文献   
182.

Background

Ionotropic glutamate receptors (iGluRs) are responsible for extracellular signaling in the central nervous system. However, the relationship between the overall structure of the protein and its function has yet to be resolved. Atomic force microscopy (AFM) is an important technique that allows nano-scale imaging in liquid. In the present work we have succeeded in imaging by AFM of the external features of the most common iGluR, AMPA-R (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor), in a physiological environment.

Methods

Homomeric GluR3 receptors were over-expressed in insect cells, purified and reconstituted into lipid membranes. AFM images were obtained in a buffer from membranes immobilized on a mica substrate.

Results

Using Au nanoparticle-conjugated antibodies, we show that proteins reconstitute predominantly with the N-terminal domain uppermost on the membrane. A tetrameric receptor structure is clearly observed, but it displays considerable heterogeneity, and the dimensions differ considerably from cryo-electron microscopy measurements.

Conclusions

Our results indicate that the extracellular domains of AMPA-R are highly flexible in a physiological environment.

General significance

AFM allows us to observe the protein surface structure, suggesting the possibility of visualizing real time conformational changes of a functioning protein. This knowledge may be useful for neuroscience as well as in pharmaceutical applications.  相似文献   
183.
A series of cationic cyclic heptapeptides based on polymyxin B have been synthesized for use as permeabilizers of the outer membrane of Gram-negative bacteria. Only analogs with the Dab2-d-Phe3-Leu4-Xxx5 sequence (Xxx = Dab or Orn) showed a synergistic bactericidal effect when combined with conventional antibiotics, indicating that the Dab2 residue plays a critical role in permeation of the outer membrane of Gram-negative bacteria.  相似文献   
184.
We surveyed changes of the gene expression profile in caerulein-exposed pancreas using Affymetrix GeneChip system (39,000 genes). Up-regulation of genes coding for claudin 4, claudin 7, F11 receptor, cadherin 1, integrin beta 4, syndecan 1, heat shock proteins b1/90aa1, Serpinb6a, Serpinb6b, Serpinb9, Bax, Bak1, calpain 2, calpain 5, microtubule-associated protein 1 light chain 3 alpha, S100 calcium-binding proteins A4/A10 were found in mouse pancreas exposed to caerulein for 12 h. In contrast, the anti-apoptotic gene Bcl2 was down-regulated. The functions of these genes concern tight junction formation, cell-cell/cell-matrix adhesions, stress response, protease inhibition, apoptosis, autophagy, and regulation of cytoskeletal dynamics. Caerulein-exposed pancreatic acinar cells were immunohistochemically stained for claudin 4, cadherin 1, integrin beta 4, heat shock protein b1, and Serpinb6a. In conclusion, we have newly identified a set of genes that are likely to be involved in endogenous self-protection mechanisms against acute pancreatitis.  相似文献   
185.
186.
While interspecific variation in the temperature response of photosynthesis is well documented, the underlying physiological mechanisms remain unknown. Moreover, mechanisms related to species-dependent differences in photosynthetic temperature acclimation are unclear. We compared photosynthetic temperature acclimation in 11 crop species differing in their cold tolerance, which were grown at 15°C or 30°C. Cold-tolerant species exhibited a large decrease in optimum temperature for the photosynthetic rate at 360 μL L−1 CO2 concentration [Opt (A360)] when growth temperature decreased from 30°C to 15°C, whereas cold-sensitive species were less plastic in Opt (A360). Analysis using the C3 photosynthesis model shows that the limiting step of A360 at the optimum temperature differed between cold-tolerant and cold-sensitive species; ribulose 1,5-bisphosphate carboxylation rate was limiting in cold-tolerant species, while ribulose 1,5-bisphosphate regeneration rate was limiting in cold-sensitive species. Alterations in parameters related to photosynthetic temperature acclimation, including the limiting step of A360, leaf nitrogen, and Rubisco contents, were more plastic to growth temperature in cold-tolerant species than in cold-sensitive species. These plastic alterations contributed to the noted growth temperature-dependent changes in Opt (A360) in cold-tolerant species. Consequently, cold-tolerant species were able to maintain high A360 at 15°C or 30°C, whereas cold-sensitive species were not. We conclude that differences in the plasticity of photosynthetic parameters with respect to growth temperature were responsible for the noted interspecific differences in photosynthetic temperature acclimation between cold-tolerant and cold-sensitive species.The temperature dependence of leaf photosynthetic rate shows considerable variation between plant species and with growth temperature (Berry and Björkman, 1980; Cunningham and Read, 2002; Hikosaka et al., 2006). Plants native to low-temperature environments and those grown at low temperatures generally exhibit higher photosynthetic rates at low temperatures and lower optimum temperatures, compared with plants native to high-temperature environments and those grown at high temperatures (Mooney and Billings, 1961; Slatyer, 1977; Berry and Björkman, 1980; Sage, 2002; Salvucci and Crafts-Brandner, 2004b). For example, the optimum temperature for photosynthesis differs between temperate evergreen species and tropical evergreen species (Hill et al., 1988; Read, 1990; Cunningham and Read, 2002). Such differences have been observed even among ecotypes of the same species (Björkman et al., 1975; Pearcy, 1977; Slatyer, 1977).Temperature dependence of the photosynthetic rate has been analyzed using the biochemical model proposed by Farquhar et al. (1980). This model assumes that the photosynthetic rate (A) is limited by either ribulose 1,5-bisphosphate (RuBP) carboxylation (Ac) or RuBP regeneration (Ar). The optimum temperature for photosynthetic rate in C3 plants is thus potentially determined by (1) the temperature dependence of Ac, (2) the temperature dependence of Ar, or (3) both, at the colimitation point of Ac and Ar (Fig. 1; Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006).Open in a separate windowFigure 1.A scheme illustrating the shift in the optimum temperature for photosynthesis depending on growth temperature. Based on the C3 photosynthesis model, the A360 (white and black circles) is limited by Ac (solid line) or Ar (broken line). The optimum temperature for the photosynthetic rate is potentially determined by temperature dependence of Ac (A), temperature dependence of Ar (B), or the intersection of the temperature dependences of Ac and Ar (C). When the optimum temperature for the photosynthetic rate shifts to a higher temperature, there are also three possibilities determining the optimum temperature: temperature dependence of Ac (D), temperature dependence of Ar (E), or the intersection of the temperature dependences of Ac and Ar (F). Especially in the case that the optimum temperature is determined by the intersection of the temperature dependences of Ac and Ar, the optimum temperature can shift by changes in the balance between Ac and Ar even when the optimum temperatures for these two partial reactions do not change.In many cases, the photosynthetic rate around the optimum temperature is limited by Ac, and thus the temperature dependence of Ac determines the optimum temperature for the photosynthetic rate (Hikosaka et al., 1999, 2006; Yamori et al., 2005, 2006a, 2006b, 2008; Sage and Kubien, 2007; Sage et al., 2008). As the temperature increases above the optimum, Ac is decreased by increases in photorespiration (Berry and Björkman, 1980; Jordan and Ogren, 1984; von Caemmerer, 2000). Furthermore, it has been suggested that the heat-induced deactivation of Rubisco is involved in the decrease in Ac at high temperature (Law and Crafts-Brandner, 1999; Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004a; Yamori et al., 2006b). Numerous previous studies have shown changes in the temperature dependence of Ac with growth temperature (Hikosaka et al., 1999; Bunce, 2000; Yamori et al., 2005). Also, the temperature sensitivity of Rubisco deactivation may differ between plant species (Salvucci and Crafts-Brandner, 2004b) and with growth temperature (Yamori et al., 2006b), which may explain variation in the optimum temperature for photosynthesis (Fig. 1, A and D).Ar is more responsive to temperature than Ac and often limits photosynthesis at low temperatures (Hikosaka et al., 1999, 2006; Sage and Kubien, 2007; Sage et al., 2008). Recently, several researchers indicated that Ar limits the photosynthetic rate at high temperature (Schrader et al., 2004; Wise et al., 2004; Cen and Sage, 2005; Makino and Sage, 2007). They suggested that the deactivation of Rubisco at high temperatures is not the cause of decreased Ac but a result of limitation by Ar. However, it remains unclear whether limitation by Ar is involved in the variation in the optimum temperature for the photosynthetic rate (Fig. 1, B and E).A shift in the optimum temperature for photosynthesis can result from changes in the balance between Ar and Ac, even when the optimum temperatures for these two partial reactions do not change (Fig. 1, C and F; Farquhar and von Caemmerer, 1982). The balance between Ar and Ac has been shown to change depending on growth temperature (Hikosaka et al., 1999; Hikosaka, 2005; Onoda et al., 2005a; Yamori et al., 2005) and often brings about a shift in the colimitation temperature of Ar and Ac. Furthermore, recent studies have shown that plasticity in this balance differs among species or ecotypes (Onoda et al., 2005b; Atkin et al., 2006; Ishikawa et al., 2007). Plasticity in this balance could explain interspecific variation in the plasticity of photosynthetic temperature dependence (Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006), although there has been no evidence in the previous studies that the optimum temperature for photosynthesis occurs at the colimitation point of Ar and Ac.Temperature tolerance differs between species and, with growth temperature, even within species from the same functional group (Long and Woodward, 1989). Bunce (2000) indicated that the temperature dependences of Ar and Ac to growth temperature were different between species from cool and warm climates and that the balance between Ar and Ac was independent of growth temperature for a given plant species. However, it was not clarified what limited the photosynthetic rate or what parameters were important in temperature acclimation of photosynthesis. Recently, we reported that the extent of temperature homeostasis of leaf respiration and photosynthesis, which is assessed as a ratio of rates measured at their respective growth temperatures, differed depending on the extent of the cold tolerance of the species (Yamori et al., 2009b). Therefore, comparisons of several species with different cold tolerances would provide a new insight into interspecific variation of photosynthetic temperature acclimation and their underlying mechanisms. In this study, we selected 11 herbaceous crop species that differ in their cold tolerance (Yamori et al., 2009b) and grew them at two contrasting temperatures, conducting gas-exchange analyses based on the C3 photosynthesis model (Farquhar et al., 1980). Based on these results, we addressed the following key questions. (1) Does the plasticity in photosynthetic temperature acclimation differ between cold-sensitive and cold-tolerant species? (2) Does the limiting step of photosynthesis at several leaf temperatures differ between plant species and with growth temperature? (3) What determines the optimum temperature for the photosynthetic rate among Ac, Ar, and the intersection of the temperature dependences of Ac and Ar?  相似文献   
187.
Nitric oxide (NO) is related to various physiological effects as well as to numerous diseases caused by accentuation of NO production. Measurement of NO in cells and tissues is difficult as NO readily reacts with other molecules; furthermore, its half‐life as a radical is fleeting. Currently, many NO pharmaceuticals are marketed as therapeutic agents for ischemic disease. Consequently, the identification of NO radicals and determination of generation rate from pharmaceuticals is very important when the effect of the medicinal supply is estimated. In this study, we developed a fluorometric assay for NO employing sesamol (3,4‐methylenedioxyphenol) as a fluorometric substrate. Sesamol is converted to a fluorescent derivative (ex. 365 nm, em. 447 nm), which is dimmer in the presence of NO. The detection limit of NO with this method is 400 fmol; moreover, NO generated from drugs can be measured. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
188.
Background: The treatment and prevention of glucocorticoid (GC)-induced osteoporosis have been controversial in premenopausal women during their childbearing years.Objective: This study assessed the incidence and risk factors for symptomatic vertebral fracture in women of childbearing age newly treated with high-dose GC.Methods: An observational cohort study was conducted at the rheumatic center of Shimoshizu National Hospital in Chiba, Japan, from 1986 to 2006. The prevalence of symptomatic vertebral fractures, as determined by x-rays, was assessed in premenopausal (aged <50 years) women with collagen vascular disease newly treated with high-dose GC (≥20 mg/d prednisolone equivalent) compared with their counterparts who did not receive GC. Differences in the incidences of vertebral fractures were compared between groups by the Kaplan-Meier method and evaluated by the log-rank test. Hazard ratios (HRs) with 95% CIs were estimated using the Cox proportional hazards regression model.Results: A total of 373 women were assessed: 292 patients in the high-dose GC treatment group (mean [SD] initial age, 32.4 [8.2] years; initial dose, 43.8 [14.9] mg/d; follow-up time, 124.2 [75.4] months) and 81 patients in the non-GC control group (initial age, 39.3 [7.8] years; follow-up time, 106.5 [79.7] months). Symptomatic vertebral fractures occurred more frequently in the high-dose GC group (11.3%) than in the non-GC group (1.2%). Using the Cox model, the adjusted HR for the high-dose GC group was 13.96 (95% CI, 1.87–104.22) relative to the non-GC group. In the high-dose GC group, Kaplan-Meier analyses revealed that the incidence of fractures in women in their forties was significantly higher in comparison with those in their twenties (P < 0.001) and thirties (P < 0.05), and that the incidence of fractures in those who consumed alcohol (>80 g/wk of pure alcohol) was significantly higher than in those who did not (P < 0.05). The Cox model also revealed that the risk was independently higher with every 10-year increment of initial age (HR = 2.27; 95% CI, 1.46–3.53), with every GC dose increase (HR = 2.28; 95% CI, 1.58–3.31), and with each 1-gram decrease of cumulative GC dose (HR = 0.95; 95% CI, 0.93–0.98).Conclusions: In this study, high-dose GC use was associated with a significantly high prevalence of symptomatic vertebral fractures in premenopausal women with collagen vascular disease during their childbearing years. However, the fracture risk was relatively low in women of childbearing age, especially those in their twenties and thirties during the early years of treatment.  相似文献   
189.
A spray administration of ivermectin was evaluated for the treatment of pinworm infection in mice. In this study, a spray of 0.1% ivermectin injectable solution over the entire cage once a week, for three consecutive weeks (one cycle treatment), was effective in eradicating both Syphacia obvelata and Aspiculuris tetraptera from mice under experimental conditions. In addition, no acute toxicity was observed in 105 mothers or 687 neonates treated with ivermectin, indicating that ivermectin does not affect murine reproduction. Finally, we attempted to eradicate pinworms from infected mice in our institute using this method. Two cycles of treatment were administered, with a two-week pause between cycles, resulting in complete eradication for at least one year. Treating mouse colonies with spray ivermectin is inexpensive, safe, requires very little labor and is very effective at eradicating pinworms from mice.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号