首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   137篇
  国内免费   1篇
  2612篇
  2023年   38篇
  2022年   83篇
  2021年   124篇
  2020年   53篇
  2019年   60篇
  2018年   90篇
  2017年   65篇
  2016年   107篇
  2015年   112篇
  2014年   124篇
  2013年   171篇
  2012年   164篇
  2011年   166篇
  2010年   103篇
  2009年   86篇
  2008年   106篇
  2007年   105篇
  2006年   91篇
  2005年   78篇
  2004年   91篇
  2003年   68篇
  2002年   62篇
  2001年   46篇
  2000年   32篇
  1999年   19篇
  1998年   22篇
  1997年   20篇
  1996年   10篇
  1995年   17篇
  1994年   11篇
  1993年   13篇
  1992年   16篇
  1991年   17篇
  1990年   9篇
  1989年   8篇
  1988年   13篇
  1986年   13篇
  1985年   16篇
  1984年   11篇
  1982年   7篇
  1981年   13篇
  1980年   20篇
  1979年   9篇
  1978年   12篇
  1977年   9篇
  1976年   10篇
  1974年   9篇
  1973年   10篇
  1972年   7篇
  1969年   9篇
排序方式: 共有2612条查询结果,搜索用时 15 毫秒
61.
Two trials were conducted to evaluate the efficacy of a granular mycoherbicide formulation based on Fusarium oxysporum and post-emergence herbicide for the control of the parasitic plant, Striga hermonthica in the Nigerian Savanna. Four fungal treatments were used: F. oxysporum followed by 2,4-D, F. oxysporum followed by supplementary hoe weeding, F. oxysporum followed by Triclopyr and a control (No F. oxysporum but hoe-weeded). The experiments were laid out in a split plot design with three replications in the two locations. The two varieties (Across 97 TZL and farmer's local variety) formed the main plot treatments, while the Striga fungal treatments formed the sub-plot treatments. At the Lafia location, the emergence of Striga was delayed by 7 days (46 days) as compared to the Makurdi location, which germinated earlier 39 days after sowing. Maize variety Across 97 TZL similarly delayed the time to Striga emergence when compared to the farmer's local variety. However, the different Striga control methods did not have any significant effect on the time of Striga emergence. Generally, number of maize plants infected with Striga was highest with the farmer's local variety throughout the period of observation, while in the Striga control treatments, hoe-weeded check recorded the highest; the minimum was obtained with plots treated with F. oxysporum followed by postemergence application of Triclopyr at the rate of 0.36 kg a.i./ha at 6 weeks after sowing. Highest maize grain yields were obtained at Lafia with Across 97 TZL and plots treated with F. oxysporum followed by either post-emergence 2,4-D or Triclopyr at 0.36 kg a.i./ha each. The results demonstrate the high potentiality of using F. oxysporum as a spot application at planting followed by post-emergence herbicide (2,4-D or Triclopyr) application at 6 weeks after sowing for the control of the parasitic plant S. hermonthica in the Nigerian Savanna.  相似文献   
62.
The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.  相似文献   
63.
Silicon (Si) is a nonessential, beneficial micronutrient for plants. It increases the plant stress tolerance in relation to its accumulation capacity. In this work, root Si transporter genes were characterized in 17 different plants and inferred for their Si-accumulation status. A total of 62 Si transporter genes (31 Lsi1 and 31 Lsi2) were identified in studied plants. Lsi1s were 261–324 residues protein with a MIP family domain whereas Lsi2s were 472–547 residues with a citrate transporter family domain. Lsi1s possessed characteristic sequence features that can be employed as benchmark in prediction of Si-accumulation status/capacity of the plants. Silicic acid selectivity in Lsi1s was associated with two highly conserved NPA (Asn-Pro-Ala) motifs and a Gly-Ser-Gly-Arg (GSGR) ar/R filter. Two NPA regions were present in all Lsi1 members but some Ala substituted with Ser or Val. GSGR filter was only available in the proposed high and moderate Si accumulators. In phylogeny, Lsi1s formed three clusters as low, moderate and high Si accumulators based on tree topology and availability of GSGR filter. Low-accumulators contained filters WIGR, AIGR, FAAR, WVAR and AVAR, high-accumulators only with GSGR filter, and moderate-accumulators mostly with GSGR but some with A/CSGR filters. A positive correlation was also available between sequence homology and Si-accumulation status of the tested plants. Thus, availability of GSGR selectivity filter and sequence homology degree could be used as signatures in prediction of Si-accumulation status in experimentally uncharacterized plants. Moreover, interaction partner and expression profile analyses implicated the involvement of Si transporters in plant stress tolerance.  相似文献   
64.
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01239-9.  相似文献   
65.
Apis mellifera jemenitica incorporates a few perceived subspecies that vary in their natural properties and farming qualities. Mitochondrial COI gene sequence (mtCOI) has not been used before for bee identification in the southwestern region of Saudi Arabia. The aim of this work was to study the morphometry and analyzing the mtCOI of all collected bees. The nucleotide sequence of the mtCOI gene was analyzed. Similarity searches and distances between each obtained DNA and sequences available in GenBank were made. Morphometric analysis revealed close similarities among the studied bees, but these similarities are different from those previously indicated in earlier studies of the same region. Molecular studies revealed that the collected bees are similar to each other and some other sequences found in GenBank, but these bees are a new hybrid or subspecies that are different from those previously reported in the same region, indicating the emergence of a new hybrid.  相似文献   
66.
Developing a safe and effective antiviral treatment takes a decade, however, when it comes to the coronavirus disease (COVID-19), time is a sensitive matter to slow the spread of the pandemic. Screening approved antiviral drugs against COVID-19 would speed the process of finding therapeutic treatment. The current study examines commercially approved drugs to repurpose them against COVID-19 virus main protease using structure-based in-silico screening. The main protease of the coronavirus is essential in the viral replication and is involved in polyprotein cleavage and immune regulation, making it an effective target when developing the treatment. A Number of approved antiviral drugs were tested against COVID-19 virus using molecular docking analysis by calculating the free natural affinity of the binding ligand to the active site pocket and the catalytic residues without forcing the docking of the ligand to active site. COVID-19 virus protease solved structure (PDB ID: 6LU7) is targeted by repurposed drugs. The molecular docking analysis results have shown that the binding of Remdesivir and Mycophenolic acid acyl glucuronide with the protein drug target has optimal binding features supporting that Remdesivir and Mycophenolic acid acyl glucuronide can be used as potential anti-viral treatment against COVID-19 disease.  相似文献   
67.
Phytochemistry Reviews - Thiophenes are a class of heterocyclic aromatic compounds based on a five-membered ring made up of one sulfur and four carbon atoms. The thiophene nucleus is well...  相似文献   
68.
69.
Proliferating cells properly divide into their daughter cells through a process that is mediated by kinetochores, protein–complexes that assemble at the centromere of each sister chromatid. Each kinetochore has to establish a tight bipolar attachment to the spindle apparatus before sister chromatid separation is initiated. The spindle assembly checkpoint (SAC) links the biophysical attachment status of the kinetochores to mitotic progression and ensures that even a single misaligned kinetochore keeps the checkpoint active. The mechanism by which this is achieved is still elusive. Current computational models of the human SAC disregard important biochemical properties by omitting any kind of feedback loop, proper kinetochore signals, and other spatial properties such as the stability of the system and diffusion effects. To allow for more realistic in silico study of the dynamics of the SAC model, a minimal mathematical framework for SAC activation and silencing is introduced. A nonlinear ordinary differential equation model successfully reproduces bifurcation signaling switches with attachment of all 92 kinetochores and activation of APC/C by kinetochore-driven feedback. A partial differential equation model and mathematical linear stability analyses indicate the influence of diffusion and system stability. The conclusion is that quantitative models of the human SAC should account for the positive feedback on APC/C activation driven by the kinetochores which is essential for SAC silencing. Experimental diffusion coefficients for MCC subcomplexes are found to be insufficient for rapid APC/C inhibition. The presented analysis allows for systems-level understanding of mitotic control, and the minimal new model can function as a basis for developing further quantitative–integrative models of the cell division cycle.  相似文献   
70.
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ~2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号