首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12765篇
  免费   1004篇
  国内免费   4篇
  2022年   74篇
  2021年   198篇
  2020年   140篇
  2019年   183篇
  2018年   201篇
  2017年   188篇
  2016年   322篇
  2015年   461篇
  2014年   601篇
  2013年   729篇
  2012年   885篇
  2011年   933篇
  2010年   568篇
  2009年   559篇
  2008年   722篇
  2007年   746篇
  2006年   718篇
  2005年   649篇
  2004年   630篇
  2003年   618篇
  2002年   599篇
  2001年   161篇
  2000年   110篇
  1999年   142篇
  1998年   141篇
  1997年   116篇
  1996年   111篇
  1995年   125篇
  1994年   87篇
  1993年   123篇
  1992年   105篇
  1991年   73篇
  1990年   85篇
  1989年   78篇
  1988年   67篇
  1987年   78篇
  1986年   61篇
  1985年   76篇
  1984年   101篇
  1983年   75篇
  1982年   103篇
  1981年   89篇
  1980年   69篇
  1979年   55篇
  1978年   57篇
  1977年   48篇
  1976年   42篇
  1975年   41篇
  1974年   72篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
? Premise of the study: Cynodon species are multiple-use grasses that display varying levels of adaptation to biotic and abiotic stress. Previously identified EST-SSR primers were characterized and multiplexed to assess the level of genetic diversity present within a collection of almost 1200 Cynodon accessions from across Australia. ? Methods and Results: Two multiplex reactions were developed comprising a total of 16 EST-SSR markers. All SSR markers amplified across different Cynodon species and different levels of ploidy. The number of alleles ranged from one to eight per locus and the total number of alleles for the germplasm collection was 79. ? Conclusions: The 16 markers show sufficient variation for the characterization of Cynodon core collections and analysis of population genetic diversity in Cynodon grasses.  相似文献   
952.
Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (<125 g/m(2); mean = 76 g/m(2)) but are high for gymnosperm species (>240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.  相似文献   
953.
The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient <0.003 μm2 s−1), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of ∼400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.  相似文献   
954.
Understanding the drivers that dictate the productivity of marine ecosystems continues to be a globally important issue. A vast literature identifies three main processes that regulate the production dynamics of such ecosystems: biophysical, exploitative and trophodynamic. Exploring the prominence among this ‘triad’ of drivers, through a synthetic analysis, is critical for understanding how marine ecosystems function and subsequently produce fisheries resources of interest to humans. To explore this topic further, an international workshop was held on 10–14 May 2010, at the National Academy of Science''s Jonsson Center in Woods Hole, MA, USA. The workshop compiled the data required to develop production models at different hierarchical levels (e.g. species, guild, ecosystem) for many of the major Northern Hemisphere marine ecosystems that have supported notable fisheries. Analyses focused on comparable total system biomass production, functionally equivalent species production, or simulation studies for 11 different marine fishery ecosystems. Workshop activities also led to new analytical tools. Preliminary results suggested common patterns driving overall fisheries production in these ecosystems, but also highlighted variation in the relative importance of each among ecosystems.  相似文献   
955.
The present state of knowledge of the phytochemistry of small molecules isolated from the roots and leaves of cassava, Manihot esculenta Crantz (Euphorbiaceae), is reviewed. Cassava roots are an important source of dietary and industrial carbohydrates, mainly eaten as a source of starch, forming the staple food to over 500 million; additionally, the roots have value as a raw material for industrial starch production and for animal feed giving the crop high economic value, but it suffers markedly from post-harvest physiological deterioration (PPD). The hydroxycoumarins scopoletin and its glucoside scopolin as well as trace quantities of esculetin and its glucoside esculin are identified from cassava roots during PPD. The biotechnological prospects for cassava are also reviewed including a critical appraisal of transgenic approaches for crop improvement, together with its use for bioethanol production, due to cassava's efficient ability to fix carbon dioxide into carbohydrate.  相似文献   
956.
Apple replant disease (ARD) is a soil-borne disease complex that affects young apple trees in replanted orchards, resulting in stunted growth and reduced yields. Newly developed rootstock genotypes with tolerance to ARD may help to control this disease. We determined the effects of rootstock genotype rotations during orchard renovation, by investigating root-zone soil microbial consortia and the relative severity of ARD on seven rootstock genotypes (M.9, M.26, G.30, G.41, G.65, G.935, and CG.6210) planted in soil where trees on four of those same rootstocks (M.9, M.26, G.30 and CG.6210) had grown for the previous 15 years. Rootstock genotyping indicated that genetic distances among rootstocks were loosely correlated with their differential responses to ARD. Root-zone fungal and bacterial community composition, assessed by DNA fingerprinting (T-RFLP), differed between M.26 and CG.6210. Soil bacterial communities were influenced most by which rootstock had grown in the soil previously, while fungal communities were influenced more by the current replanted rootstock. In a clone library of bacteria from M.26 and CG.6210 root-zone soil, β-Proteobacteria was the most abundant phylum (25% of sequences). Sequences representing the Burkholderia cepacia complex were obtained only from CG.6210 soil. Rootstock genotypes that were grown in the orchard soil previously affected subsequent ARD severity, but replanting with the same or closely related rootstocks did not necessarily exacerbate this disease problem. Our results suggest that genotype-specific interactions with soil microbial consortia are linked with apple rootstock tolerance or susceptibility to ARD.  相似文献   
957.
Wounding and herbivore attack elicit the rapid (within minutes) accumulation of jasmonic acid (JA) that results from the activation of previously synthesized biosynthetic enzymes. Recently, several regulatory factors that affect JA production have been identified; however, how these regulators affect JA biosynthesis remains at present unknown. Here we demonstrate that Nicotiana attenuata salicylate-induced protein kinase (SIPK), wound-induced protein kinase (WIPK), nonexpressor of PR-1 (NPR1), and the insect elicitor N-linolenoyl-glucose (18:3-Glu) participate in mechanisms affecting early enzymatic steps of the JA biosynthesis pathway. Plants silenced in the expression of SIPK and NPR1 were affected in the initial accumulation of 13-hydroperoxy-linolenic acid (13-OOH-18:3) after wounding and 18:3-Glu elicitation by mechanisms independent of changes in 13-lipoxygenase activity. Moreover, 18:3-Glu elicited an enhanced and rapid accumulation of 13-OOH-18:3 that depended partially on SIPK and NPR1 but was independent of increased 13-lipoxygenase activity. Together, the results suggested that substrate supply for JA production was altered by 18:3-Glu elicitation and SIPK- and NPR1-mediated mechanisms. Consistent with a regulation at the level of substrate supply, we demonstrated by virus-induced gene silencing that a wound-repressed plastidial glycerolipase (NaGLA1) plays an essential role in the induction of de novo JA biosynthesis. In contrast to SIPK and NPR1, mechanisms mediated by WIPK did not affect the production of 13-OOH-18:3 but were critical to control the conversion of this precursor into 12-oxo-phytodienoic acid. These differences could be partially accounted for by reduced allene oxide synthase activity in WIPK-silenced plants.Jasmonic acid (JA) and some of its precursors and derivatives are signal molecules that function as essential mediators of the plant''s wound, antiherbivore, and antipathogen responses, as well as in growth and development (Farmer, 1994; Creelman and Mullet, 1997; Turner et al., 2002). In unelicited mature leaves, JA is maintained at very low levels, however, upon specific stimulations, its biosynthesis is induced within a few minutes (Glauser et al., 2008). This rapid biosynthetic response must result from the activation of constitutively expressed JA biosynthesis enzymes in unelicited tissue by substrate availability and/or posttranslational modifications. At present, little is known about the molecular mechanisms that activate JA biosynthetic enzymes.According to the canonical mechanism for JA biosynthesis (Vick and Zimmerman, 1983), free α-linolenic acid (18:3Δ9,12,15, 18:3) forms 13(S)-hydroperoxyoctadecatrienoic acid [13S-(OOH)-18:3] by the action of 13-lipoxygenase (13-LOX) in plastids. 13S-(OOH)-18:3 is converted by allene oxide synthase (AOS) into a highly unstable allene oxide intermediate that is processed by allene oxide cyclase (AOC) to yield (9S,13S)-12-oxo-phytodienoic acid (OPDA). OPDA is transported from the plastid into the peroxisome where it is reduced by the action of OPDA reductase 3 (OPR3) and after three cycles of β-oxidation, (3R,7S)-JA is formed. Due to the large number of enzymes and different cellular compartments involved in JA biosynthesis, it is expected that the pathway is regulated at multiple steps. Resolution of the structures of the tomato (Solanum lycopersicum) OPR3 and Arabidopsis (Arabidopsis thaliana) AOC2 and ACX1 has provided insights into potential regulatory mechanisms for these enzymes (e.g. oligomerization and phosphorylation; Pedersen and Henriksen, 2005; Breithaupt et al., 2006; Hofmann et al., 2006).The identification of two Arabidopsis plastidial glycerolipases, DAD1 and DGL (Ishiguro et al., 2001; Hyun et al., 2008), has provided genetic evidence for the importance of the release of trienoic fatty acids (FAs) from plastidial lipids in the activation of JA biosynthesis. Recently, some oxylipins have been found esterified to galactolipids in Arabidopsis leaves and hence it is possible that in this species preformed precursors could also supply the JA biosynthesis pathway after their release from lipids (Stelmach et al., 2001; Hisamatsu et al., 2003; Buseman et al., 2006). However, lipid-bound oxylipins are not formed in the leaves of all plant families (Böttcher and Weiler, 2007).In Nicotiana attenuata, wound-induced JA production is amplified by the application of lepidopteran larvae (e.g. Manduca sexta) oral secretions (OS) to mechanical wounds. Major elicitors of the OS-mediated response are FA-amino acid conjugates (FACs) that are sufficient to enhance JA production in leaves of this plant species (Halitschke et al., 2001). Recently, several regulatory factors with a potential function upstream of JA biosynthesis have been identified (Ludwig et al., 2005; Takabatake et al., 2006; Schweighofer et al., 2007; Takahashi et al., 2007); however, how these regulators affect JA biosynthesis is at present unknown. For example, wounding and herbivory in Nicotina spp. and tomato activate the mitogen-activated protein kinases salicylate-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK; Seo et al., 1999; Kandoth et al., 2007; Wu et al., 2007). When SIPK and WIPK expression is silenced in tobacco (Nicotiana tabacum), the plants accumulate 60% to 70% less JA than wild type after wounding or OS elicitation (Seo et al., 2007; Wu et al., 2007). Another regulatory component that affects JA production in N. attenuata is Nonexpressor of PR-1 (NPR1), an essential component of the salicylic acid (SA) signal transduction pathway first identified in Arabidopsis (Cao et al., 1994). N. attenuata NPR1-silenced plants accumulate 60% to 70% lower JA levels after elicitation than wild type (Rayapuram and Baldwin, 2007). NPR1 interacts with the JA and ethylene signaling cascades, and a cytosolic role for this factor in the regulation of JA-dependent responses/biosynthesis has been proposed (Spoel et al., 2003).In contrast to the mechanisms acting upstream of JA biosynthesis, the mechanisms mediating downstream JA responses are better characterized (Kazan and Manners, 2008; Browse, 2009). Among the best-characterized regulators of these responses is CORONATIVE INSENSITIVE1 (COI1), a gene that participates in jasmonate perception (Xie et al., 1998) and regulates gene expression through its interaction with the JASMONATE ZIM-DOMAIN repressors (Chini et al., 2007; Thines et al., 2007).To understand the early processes regulating the activation of JA biosynthesis by wounding and FAC elicitation in N. attenuata leaves, we quantified the initial rates of accumulation of plastid-derived JA precursors after these stimuli in wild type and four JA-deficient genotypes previously described: ir-sipk, ir-wipk, ir-npr1, and ir-coi1 (Rayapuram and Baldwin, 2007; Paschold et al., 2008; Meldau et al., 2009). We show that SIPK, WIPK, NPR1, and FACs contribute to the activation of de novo JA biosynthesis by affecting diverse early enzymatic steps in this pathway. The identification of a plastidial glycerolipase A1 type I family protein (GLA1) essential for JA biosynthesis pointed to this enzyme as one potential target of some of these activating mechanisms.  相似文献   
958.
959.
Ecosystem responses to current global climate change can be predicted through experimental climate simulations. One such simulation method is the open-top chamber (OTC). The effects of OTCs on environmental factors are potentially complex, and recognizing the numerous interactions among these factors is crucial for the proper use of chambers. We studied the effects of OTCs on microclimatic factors including ambient temperature, relative humidity, soil temperature, and soil moisture. Plant abundance responses were also assessed. Our study involved the construction of 20 OTCs (1 m in diameter and 0.75 m in height; made of clear acrylic plastic) and 20 control plots on substrates with and without Sphagnum moss, at post-fire and logging sites of the transitional mixedwood-boreal forest in the southern part of James Bay region, Quebec. Experimental trials were also conducted to test the effects of OTCs on snowmelt in the Montreal region. Our results suggest that OTC treatment is most evident in terms of increased daytime maximum temperatures (2°C to 3°C), and cooler (up to ~2.4°C), drier (up to 10% volumetric moisture content) soils. Advanced thawing of the insulating snow cover and exposure of soil in the OTCs to low spring temperatures appeared to prolong soil freeze and result in cooler soils. Earlier snowmelt probably also led to earlier onset and overall increased evaporation of meltwater in the OTCs, leading to drier soils. Plant abundance responses to OTC treatment differed depending on plant species. Overall, open-top chambers provide an effective and simple method of climate change simulation, but it is highly advisable that the complex interactive effects, both desired and undesired, are well understood and appreciated before using OTCs for experimental climate simulation.  相似文献   
960.
The number of genetically distinct individuals within a community is a key component of biodiversity and yet its impact at different trophic levels, especially upon the diversity of functionally important soil microorganisms is poorly understood. Here, we test the hypothesis that plant communities that are genetically impoverished will support fewer species of root-associated fungi. We used established grassland mesocosms comprising non-sterile natural soil supporting defined communities of 11 clonally-propagated plant species. Half of the mesocosms contained one genotype per species and half 16 genotypes per species. After 8 years growth, we sampled roots from the mesocosms and measured root-associated fungal richness and diversity using terminal restriction fragment length polymorphism (T-RFLP). Contrary to our hypothesis, we found that the roots of genetically impoverished communities contained more species of fungi and had greater diversity compared to genetically rich communities. Analysis of the plant species composition of the mesocosm communities indicated that genotypic diversity affects root-fungal diversity indirectly through its influence upon plant species diversity. Our findings highlight the need to include feedbacks with plant intraspecific diversity into existing models describing the maintenance of soil biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号