首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13226篇
  免费   1068篇
  国内免费   4篇
  2022年   72篇
  2021年   202篇
  2020年   139篇
  2019年   187篇
  2018年   198篇
  2017年   194篇
  2016年   326篇
  2015年   466篇
  2014年   616篇
  2013年   749篇
  2012年   909篇
  2011年   937篇
  2010年   591篇
  2009年   574篇
  2008年   745篇
  2007年   759篇
  2006年   740篇
  2005年   681篇
  2004年   644篇
  2003年   635篇
  2002年   618篇
  2001年   181篇
  2000年   136篇
  1999年   154篇
  1998年   152篇
  1997年   124篇
  1996年   122篇
  1995年   133篇
  1994年   93篇
  1993年   127篇
  1992年   107篇
  1991年   82篇
  1990年   93篇
  1989年   81篇
  1988年   77篇
  1987年   90篇
  1986年   65篇
  1985年   89篇
  1984年   110篇
  1983年   77篇
  1982年   105篇
  1981年   91篇
  1980年   74篇
  1979年   66篇
  1978年   62篇
  1977年   60篇
  1976年   52篇
  1975年   49篇
  1974年   69篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The number of genetically distinct individuals within a community is a key component of biodiversity and yet its impact at different trophic levels, especially upon the diversity of functionally important soil microorganisms is poorly understood. Here, we test the hypothesis that plant communities that are genetically impoverished will support fewer species of root-associated fungi. We used established grassland mesocosms comprising non-sterile natural soil supporting defined communities of 11 clonally-propagated plant species. Half of the mesocosms contained one genotype per species and half 16 genotypes per species. After 8 years growth, we sampled roots from the mesocosms and measured root-associated fungal richness and diversity using terminal restriction fragment length polymorphism (T-RFLP). Contrary to our hypothesis, we found that the roots of genetically impoverished communities contained more species of fungi and had greater diversity compared to genetically rich communities. Analysis of the plant species composition of the mesocosm communities indicated that genotypic diversity affects root-fungal diversity indirectly through its influence upon plant species diversity. Our findings highlight the need to include feedbacks with plant intraspecific diversity into existing models describing the maintenance of soil biodiversity.  相似文献   
992.
The U.S. pharmaceutical industry plays a vital role in shaping the face of American healthcare. As an industry rooted in innovation, its continued evolution is inherent. With major patent expirations looming and thin product pipelines, the industry now must consider new directions to maintain growth and stability. Follow-on biologics, derived from living organisms and marketed after the patent expiration of similar therapies, represent a growing opportunity for big pharmaceutical firms, as discussed during Yale’s Healthcare 2010 conference in April. Key characteristics of follow-on biologics make them a worthwhile investment for big pharma companies: They command high prices, will likely have fewer entrants than generics due to high barriers to entry, and play to the existing strengths of big pharma firms. With the recent healthcare legislation providing the way for consistent Food and Drug Administration (FDA) regulation, the timing seems right to continue the push into this new and growing market.At a time when healthcare issues are on the mind of every American, it would serve us well to consider the future of one of the most influential players in the sector: pharmaceutical companies. National health expenditures for pharmaceutical products are hovering around 10 percent, meaning that one out of every 10 dollars that we, as a nation, spend on healthcare goes toward drugs. These drugs regulate our cholesterol levels, promote the growth of white blood cells in cancer patients, manage our restless leg syndrome, help us sleep better at night, and provide myriad other benefits to our health and well-being. Yet, for all the benefits that the pharmaceutical industry provides, it is also criticized by many for the expense of its products and the high profit margins that these products command. The growing popularity of biologics — treatments derived from living organisms, such as antibodies and interleukins — has particularly increased the price of drugs in the United States. The current price of the average biologic is more than 20 times that of a traditional, chemically synthesized small-molecule drug. There is a trade-off between high prices and innovative new therapies. Moreover, pharmaceutical companies themselves argue justifiably that prices account not only for the price of production, but also for the research and development (R&D) for that therapy as well as numerous others that did not make it all the way through the regulatory process and to the clinic.In recent years, we have witnessed the breakdown of the well-oiled innovation machinery of the traditional big pharma company. While R&D departments spent more and more (well over $1B per drug), they did not see promising results in the form of late-stage drug candidates [1]. Over time, this led to a strategic shift in portfolio management within big pharma companies toward an acquisition-heavy plan to build up their pipeline of drugs. In-house R&D projects were cut, and layoffs of scientific staff were rampant. This phenomenon continues, with 2009 bearing witness to the most mergers and acquisitions in the pharmaceutical industry to date. Industry-wide consolidation aimed to find complementary development projects and synergies in manufacturing and emerging markets. What has been the effect of all of this? The answer is not as hopeful as the pharmaceutical industry would have liked. A giant “patent cliff” still persists, referring to a number of blockbuster drugs that will go off patent over the next two years and cause a dramatic decrease in sales for big pharma firms. Without a strong pipeline to fill in the valley with new product sales, big pharma companies have begun scrambling to find new ways to generate revenue.Meanwhile, the biotech industry’s foray into therapeutics has been a wild success story. From the 1980s to the present, biologics have reshaped the face of medicine in many disease areas. The spawn of highly innovative, nimble biotech firms, biologic drugs are large, complex molecules grown in living cells rather than synthesized chemically like small molecules. For example, Enbrel is a fusion protein that acts as a tumor necrosis factor (TNF) inhibitor to stop inflammation. This drug is being widely prescribed for rheumatoid arthritis as well as psoriasis, among other indications, with sales last year reaching $5.9 billion, up 9.3 percent from 2008 [2]. Enbrel was first developed by Immunex and released in 1998. Immunex was acquired by a rival biotech firm, Amgen, in 2001 [3], and subsequent marketing of the drug in the United States was jointly undertaken by Amgen and Wyeth (now taken over by Pfizer in the mega-merger of 2009). Enbrel’s is the classic story of the modern biologic: a novel therapy developed at a small biotech firm and acquired or licensed up the food chain to feed bigger firms’ appetites for late-stage assets.Enbrel is by no means unique; there are many blockbuster biologics on the market. Like Enbrel, many of them will reach the end of their patent life soon. Enbrel’s patent expiration is set for 2012, at which time it will be exposed to potential competition from generic versions. Therefore, though there are many novel biologics therapies that can provide new ways of treating patients, there is also a huge opportunity for generic versions of biologics that did not exist even one decade ago. This opportunity is hard to quantify, but one recent estimate shows that biologics responsible for $20B in annual sales will go off patent by 2015 [4]. Unsurprisingly, small-molecule generics firms are flocking to this space. Teva, the world’s largest generics manufacturer, has partnered with the Lonza Group to make and sell so-called follow-on biologics. These treatments are similar, but not identical, to preceding biologics whose patents expired. Meanwhile, Novartis’s generics arm, Sandoz, has increased capacity in biomanufacturing to ramp up its efforts. Big pharma itself has made motions of interest in the business of follow-on biologics, as witnessed by the dedicated division of Merck, BioVentures, established in late 2008 for the development of follow-on biologics. Interestingly, even Pfizer is testing a follow-on version of Enbrel, now in phase 2 clinical trials [5]. With a big market opportunity and a number of firms interested, follow-on biologics will surely play an important role in shaping the future of the pharma industry.For large pharmaceutical firms, what is needed is a way to diversify and mitigate risk, a way to supplement their rollercoaster sales figures year after year. Follow-on biologics may be a smart play for big pharma companies. Like their generic cousins, biologics manufacturing has strong economies of scale that big pharma firms can leverage. But unlike generics, there are higher barriers to entry because of the technical challenges of manufacturing biologics and the necessary clinical proofs of equivalency. Pharmaceutical companies already are practiced at navigating the global clinical-trials arena and should be able to exercise a significant competitive advantage in this area, especially over the existing generics manufacturers attempting a play in the follow-on biologics market. It has been estimated that the investment necessary to bring a follow-on biologic to market is eight to 10 years and will cost $100-$200M [6]. This investment of time and capital is substantial and tends to favor larger firms with significant R&D budgets. However, to put the investment into perspective, this is only one-tenth of the cost of developing a full-scale innovative pharmaceutical product and has less associated risk of failure — a proposition that the big pharma industry should find appealing. Additionally, the trend for current follow-on biologics on the market in the European Union (EU) and United States has been to use traditional detailing and marketing practices to compete with branded products. This, too, puts big pharma at a competitive advantage over other players lacking an army of detailing pharmaceutical reps, who can use their established relationships with doctors and medical personnel to promote new follow-on biologics.One counter-argument to the case for a move into follow-on biologics is that the new healthcare reform, the Patient Protection and Affordable Care Act (PPACA), passed in March of this year will harm any would-be generic biologics makers with its 12-year exclusivity for branded biologics. However, while this length of time is significantly longer than the proposed five years that generics proponents pushed for, the surety of a secure path forward through the FDA for follow-on biologics outweighs the downside of lengthy biologics exclusivity. It is reasonable to hope that within two to three years, the FDA will have functional guidelines for the regulation of this nascent market. Now more than at any other time in the past, the ambiguity associated with government regulation is manageable. And if big pharma becomes more intentional about entering the follow-on biologics market, its powerful lobby, PhRMA, could influence the way that the details of the FDA regulations are written.If the pharma industry does find the follow-on biologics market appealing and makes a bet on it for supplementary revenue, what can we expect from the patient perspective? It could mean greater access at cheaper prices, but the dynamics are much more nuanced. The economics of the small-molecule generics market likely will not be transferrable to the follow-on biologics market. High barriers to entry, high fixed costs of manufacturing, and marketing expenses will more likely manifest themselves in a market that has a small number of firms with relatively small price drops upon introduction of follow-on therapies. In small-molecule generics, the price typically decreases by about 80 percent from the original branded drug price after one year of generic competition. However, in current follow-on markets in the EU, this has not been the case. Since its introduction of biosimilars regulation in 2004, the EU has successfully introduced numerous follow-on biologics for three classes of branded drugs. The results hint at what might be expected for U.S. firms: By 2008 in Germany, biosimilars had captured an estimated 14 percent to 30 percent market share and discounted prices by 25 percent [7]. The U.S. story of follow-on biologics will likely mirror that of EU biosimilars rather than that of small-molecule generics.With healthcare legislation passed and the inevitable refocusing on bending the cost curve in healthcare expenditures, big pharma firms may be able to boost their reputation with the public as well as their bottom line with a continued push into follow-on biologics. The decreased risk of approval and steady returns will help diversify pharmaceutical companies’ volatile revenue streams, while concurrently winning favorable public opinion by promoting price reductions for some of the most expensive drugs available. The cost savings to consumers will increase access for patients as FDA regulation is finalized and more and more follow-on biologics enter the market. This could be a win-win scenario for big pharma and for patients.  相似文献   
993.

Background

The mini-chromosome maintenance protein (MCM) complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7), the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM), six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM) structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket.

Results

In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp). We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity.

Conclusions

These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.
  相似文献   
994.

Background  

Changes in nonlinear neuronal mechanisms of EEG generation in the course of general anaesthesia have been extensively investigated in research literature. A number of EEG signal properties capable of tracking these changes have been reported and employed in anaesthetic depth monitors. The degree of phase coupling between different spectral components is a marker of nonlinear EEG generators and is claimed to be an important aspect of BIS. While bicoherence is the most direct measure of phase coupling, according to published research it is not directly used in the calculation of BIS, and only limited studies of its association with anaesthetic depth and level of consciousness have been published. This paper investigates bicoherence parameters across equal band and unequal band bifrequency regions, during different states of anaesthetic depth relating to routine clinical anaesthesia, as determined by visual inspection of EEG.  相似文献   
995.

Background  

Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA.  相似文献   
996.

Background  

Escherichia coli strain EL350 contains chromosomally integrated phage lambda Red recombinase genes enabling this strain to be used for modifying the sequence of resident clones via recombineering. BAC and fosmid clones are highly suitable for modification by recombineering but, because they are present at low (1-2) copies per cell, the DNA is difficult to isolate in high yield and purity. To overcome this limitation vectors, e.g. pCC1FOS, have been constructed that contain the additional replication origin, oriV, which permits copy-number to be induced transiently when propagated in a suitable host strain, e.g. EPI300, that supplies the cognate trans -replication protein TrfA. Previously, we used EL350 and EPI300 sequentially to recombineer oriV -equipped fosmid genomic clones and, subsequently, to induce copy-number of the resulting recombinant clone. To eliminate these intervening DNA isolation and transformation steps we retrofitted EL350 with a P BAD-driven trfA gene generating strain MW005 that supports, independently, both recombineering and copy-number induction.  相似文献   
997.

Introduction  

The 30-day case-fatality rate after acute myocardial infarction (MI) for rheumatoid arthritis (RA) patients is twice that of the general population. This study compared the frequency and timeliness of early reperfusion therapy and treatment with secondary prevention medications after acute MI in RA patients and controls.  相似文献   
998.
Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function.Bladder cancer is one of the eight most frequent cancers in the Western world, and the frequency of transitional cell carcinoma (TCC),1 which accounts for 90% of bladder cancers, is second only to prostate cancer as a malignancy of the genitourinary tract. Urine cytology and cystoscopy remain the predominant clinical tools for diagnosing and monitoring the disease, but cytology is poorly sensitive, particularly for low grade tumors, and does not serve as a prognostic tool. Cystoscopy is an invasive procedure, and there is pressing need to identify informative molecular markers that can be used to replace it.Recently, small cell-derived vesicles termed exosomes that are present in body fluids (15) have been proposed as a potential source of diagnostic markers (2, 68). These nanometer-sized vesicles, which are secreted by most cell types, originate from multivesicular bodies of the endocytic tract and reflect a subproteome of the cell. Exosomes are enriched in membrane and cytosolic proteins, and this molecular repertoire appears to be of particular functional importance to the immune system (9). Exosomes also comprise an array of lipids, mRNA, and microRNA, which are likely involved in conveying intercellular communication processes (10). Importantly, many exosomal components are simply not present as free soluble molecules in body fluids, such as certain microRNA species, which are encapsulated within the exosome lumen (6, 10). Therefore, the ability to isolate exosomes from urine (2), plasma (1), saliva (11), or other physiological sources (3) holds significant potential for obtaining novel and complex sets of biomarkers in a non-invasive manner. Exosome analysis may therefore be of value in disease diagnosis and monitoring in a variety of settings (6, 7, 1214).Exosomes as indicators of pathology were first documented in the context of renal injury where a differential proteomics approach revealed changes in urinary exosome phenotype following renal injury (7). The researchers identified exosomally expressed Fetuin-A as a marker that became elevated 50-fold within hours following nephrotoxin exposure in rodents. Exosomal Fetuin-A elevation was also apparent in patients with acute renal injury before changes in urinary creatinine were observed (7). Clinical exosome analysis may also prove useful for solid cancers, such as ovarian or lung cancer, where the quantity of epithelial cell adhesion molecule-positive serum exosomes may correlate with tumor stage/grade. Such disease-associated exosomes express microRNA species not detected in healthy subjects (6, 12), although in this respect, there is little correlation between microRNA and disease bulk (6, 12). Other recent examples include studies of urinary exosomes in prostate cancer with exosomes expressing protein markers 5T4 (15), prostate cancer gene 3 (PCA-3) (8), or mRNA (TMPRSS2-ERG) (8, 16) associated with prostate cancer. To our knowledge, exosomes have not yet been studied in the context of other urological malignancies such as renal cancer, and to date, only one report describes the urine-derived microparticles from bladder cancer patients (17). In that report, they examined the proteome of a highly complex mixture of microvesicles, exosomes, and other urinary constituents that can be pelleted by high speed ultracentrifugation, identifying eight proteins that may be elevated in cancer. However, given the nature of the sample analyzed, it is unknown whether these proteins are exosomally expressed.Identification of the principal and most relevant molecular markers in these and other clinical scenarios remains a major challenge. In part, this is because exosomes present within complex body fluids originate from heterogeneous cell types. For example, plasma exosomes may be derived from platelets, lymphocytes, or endothelial cells (1), and a proportion may arise from well perfused organs such as the liver (18) and likely other organs as well (16). Similarly, exosomes present in urine arise from urothelial cells of the kidney and downstream of the renal tract (2, 8, 15).Importantly, all proteomics studies of exosomes isolated from body fluids are unavoidably complicated by the presence of high abundance non-exosomal proteins contaminating the preparations. Examples include albumin, immunoglobulin, and complement components present in exosomes prepared from malignant effusions (5) and Tamm-Horsfall protein present in exosomes purified from urine (2). As such, great care must be taken in the interpretation of the large data sets produced by proteomics studies, requiring careful validation of the proteins of interest. The protein composition of exosomes using a single homogenous cell type is one approach that may be used to uncover the protein components of exosomes produced by various cell types.There remain two major issues in the realm of exosome proteomics that complicate our interpretation of lists of identified proteins. Foremost are the diverse methods chosen for exosome purification that in some studies have involved attempts to remove contaminants through a key biophysical property of the vesicles, i.e. their capacity to float on sucrose (19, 20) or other dense media (21). Not all published studies, however, have taken such steps, preferring a far simpler pellet (or pellet and wash) approach. These latter preparations may be significantly contaminated by components of the cellular secretome, cell fragments, and other components. All of these factors could lead to false positive identifications of exosome proteins. The second key issue centers on the MS approaches utilized in various exosome proteomics studies. Many early examples relied only on a peptide mass fingerprinting approach, lacking robust peptide sequence data (22, 23), and more recently, search criteria that are generally recommended for MS-derived sequence data have not been specified in all studies. In this study, we have listed only those proteins identified by good quality MS/MS data for two or more peptides. Variability in the robustness and bias in bioinformatics analysis of data sets and in the steps taken to validate identified proteins is an additional factor that impacts the confidence in the identification lists produced.In this study, we aimed to perform the first proteomics analysis of human bladder cancer exosomes. We took extensive steps to produce high purity and quality-assured exosome preparations prior to beginning proteomics workflows. Solubilizing the sample with SDS and a reducing agent (DTT) was a critical step that allowed for global protein identification using nanoscale liquid chromatography followed by MALDI-TOF/TOF mass spectrometry. In this study, we present the identification of a significant number of exosomally expressed proteins (353 in total) of unrivaled quality. Critical manual examination of these identifications revealed issues with multiple (physiologically impossible) MHC Class I identifications that were attributed to a misdesignation of nomenclature by MASCOT due to peptide (and target protein) homology. The data were subjected to unbiased overrepresentation analysis (examining ExoCarta and Gene Ontology databases) to reveal a proteome consistent with exosomes, particularly of carcinoma origin. Validation of several identified proteins, by combining ultracentrifugation on a linear sucrose gradient with Western blotting and/or analysis of exosome-coated latex beads, demonstrated correct surface orientation of several MS-identified membrane proteins at densities consistent with exosomes.The robust approaches taken emphasize our confidence in the validity of the identifications generated and highlight that 72 (of 353) proteins have not been previously shown to be exosomally expressed by other human proteomics studies. The data will be useful for future studies in this underinvestigated disease and will form a platform not only for future clinical validation of some of these putative markers but also to aid further investigations into novel aspects of exosome function and manufacture.  相似文献   
999.
A unique property of lymphocytes among all body tissues is their capacity for rapid proliferation in the context of responding to infectious challenges. Lymphocyte proliferation involves a transition from a quiescent metabolic state adjusted to maintain cellular energy homeostasis, to a proliferative metabolic state in which aerobic glycolysis is used to generate energy and biosynthetic precursors necessary for the accumulation of cell mass. Here we show that modulation of TRPM7 channel function in tumor B lymphocytes directly induces quiescent/proliferative metabolic transitions. As TRPM7 is widely expressed outside of the immune system, our results suggest that TRPM7 may play an active role in regulating metabolic transitions associated with rapid cellular proliferation and malignancy.Key words: aerobic glycolysis, lymphocyte, metabolism, quiescence, TRPM7  相似文献   
1000.
Pregnancy is a normal physiological condition in which the maternal β-cell mass increases rapidly about two-fold to adapt to new metabolic challenges. We have used a lineage tracing of β-cells to analyse the origin of new β-cells during this rapid expansion in pregnancy. Double transgenic mice bearing a tamoxifen-dependent Cre-recombinase construct under the control of a rat insulin promoter, together with a reporter Z/AP gene, were generated. Then, in response to a pulse of tamoxifen before pregnancy, β-cells in these animals were marked irreversibly and heritably with the human placental alkaline phosphatase (HP AP). First, we conclude that the lineage tracing system was highly specific for β-cells. Secondly, we scored the proportion of the β-cells marked with HP AP during a subsequent chase period in pregnant and non-pregnant females. We observed a dilution in this labeling index in pregnant animal pancreata, compared to nonpregnant controls, during a single pregnancy in the chase period. To extend these observations we also analysed the labeling index in pancreata of animals during the second of two pregnancies in the chase period. The combined data revealed statistically-significant dilution during pregnancy, indicating a contribution to new beta cells from a non-β-cell source. Thus for the first time in a normal physiological condition, we have demonstrated not only β-cell duplication, but also the activation of a non-β-cell progenitor population. Further, there was no transdifferentiation of β-cells to other cell types in a two and half month period following labeling, including the period of pregnancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号