首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1848篇
  免费   157篇
  2023年   11篇
  2022年   11篇
  2021年   38篇
  2020年   17篇
  2019年   25篇
  2018年   30篇
  2017年   35篇
  2016年   39篇
  2015年   84篇
  2014年   92篇
  2013年   115篇
  2012年   160篇
  2011年   149篇
  2010年   98篇
  2009年   108篇
  2008年   124篇
  2007年   134篇
  2006年   118篇
  2005年   105篇
  2004年   100篇
  2003年   91篇
  2002年   79篇
  2001年   23篇
  2000年   10篇
  1999年   15篇
  1998年   20篇
  1997年   6篇
  1996年   17篇
  1995年   11篇
  1994年   6篇
  1993年   13篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1974年   4篇
  1973年   6篇
  1971年   3篇
  1968年   3篇
排序方式: 共有2005条查询结果,搜索用时 31 毫秒
101.
Integrins are essential receptors for the development and functioning of multicellular animals because they mediate cell migration and cell adhesion, and regulate cell proliferation and apoptosis. Cellular regulation of the affinity of integrins for ligands - so-called 'integrin activation' - is a central property of these receptors. Integrin activation controls cell adhesion, migration and extracellular matrix assembly, thereby contributing to processes such as angiogenesis, tumor cell metastasis, inflammation, the immune response and hemostasis. Recent studies indicate that a crucial, final step in integrin activation is the binding of talin, a cytoskeletal protein, to the cytoplasmic domain of the integrin beta subunit. These results provide a focus for unraveling the many biochemical pathways implicated in integrin activation and suggest a general structural model for the connections between integrins and diverse cellular signal transduction pathways.  相似文献   
102.
An ABC-type transporter in Escherichia coli that transports both l- and d-methionine, but not other natural amino acids, was identified. This system is the first functionally characterized member of a novel family of bacterial permeases within the ABC superfamily. This family was designated the methionine uptake transporter (MUT) family (TC #3.A.1.23). The proteins that comprise the transporters of this family were analyzed phylogenetically, revealing the probable existence of several sequence-divergent primordial paralogues, no more than two of which have been transmitted to any currently sequenced organism. In addition, MetJ, the pleiotropic methionine repressor protein, was shown to negatively control expression of the operon encoding the ABC-type methionine uptake system. The identification of MetJ binding sites (in gram-negative bacteria) or S-boxes (in gram-positive bacteria) in the promoter regions of several MUT transporter-encoding operons suggests that many MUT family members transport organic sulfur compounds. Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
103.
Malaria and related parasites retain a vestigial, but biosynthetically active, plastid organelle acquired far back in evolution from a red algal cell. The organelle appears to be essential for parasite transmission from cell to cell and carries the smallest known plastid genome. Why has this genome been retained? The genes it carries seem to be dedicated to the expression of just two "housekeeping" genes. We speculate that one of these, called ycf24 in plants and sufB in bacteria, is tied to an essential "dark" reaction of the organelle--fatty acid biosynthesis. "Ball-park" clues to the function of bacterial suf genes have emerged only recently and point to the areas of iron homeostasis, [Fe-S] cluster formation and oxidative stress. We present experimental evidence for a physical interaction between SufB and its putative partner SufC (ycf16). In both malaria and plants, SufC is encoded in the nucleus and specifies an ATPase that is imported into the plastid.  相似文献   
104.
CD4 and CD8 T lymphocytes infiltrate the parenchyma of mouse brains several weeks after intracerebral, intraperitoneal, or oral inoculation with the Chandler strain of mouse scrapie, a pattern not seen with inoculation of prion protein knockout (PrP(-/-)) mice. Associated with this cellular infiltration are expression of MHC class I and II molecules and elevation in levels of the T-cell chemokines, especially macrophage inflammatory protein 1beta, IFN-gamma-inducible protein 10, and RANTES. T cells were also found in the central nervous system (CNS) in five of six patients with Creutzfeldt-Jakob disease. T cells harvested from brains and spleens of scrapie-infected mice were analyzed using a newly identified mouse PrP (mPrP) peptide bearing the canonical binding motifs to major histocompatibility complex (MHC) class I H-2(b) or H-2(d) molecules, appropriate MHC class I tetramers made to include these peptides, and CD4 and CD8 T cells stimulated with 15-mer overlapping peptides covering the whole mPrP. Minimal to modest K(b) tetramer binding of mPrP amino acids (aa) 2 to 9, aa 152 to 160, and aa 232 to 241 was observed, but such tetramer-binding lymphocytes as well as CD4 and CD8 lymphocytes incubated with the full repertoire of mPrP peptides failed to synthesize intracellular gamma interferon (IFN-gamma) or tumor necrosis factor alpha (TNF-alpha) cytokines and were unable to lyse PrP(-/-) embryo fibroblasts or macrophages coated with (51)Cr-labeled mPrP peptide. These results suggest that the expression of PrP(sc) in the CNS is associated with release of chemokines and, as shown previously, cytokines that attract and retain PrP-activated T cells and, quite likely, bystander activated T cells that have migrated from the periphery into the CNS. However, these CD4 and CD8 T cells are defective in such an effector function(s) as IFN-gamma and TNF-alpha expression or release or lytic activity.  相似文献   
105.
A peptide contained in the venom of the predatory marine snail Conus tulipa, rho-TIA, has previously been shown to possess alpha1-adrenoreceptor antagonist activity. Here, we further characterize its pharmacological activity as well as its structure-activity relationships. In the isolated rat vas deferens, rho-TIA inhibited alpha1-adrenoreceptor-mediated increases in cytosolic Ca2+ concentration that were triggered by norepinephrine, but did not affect presynaptic alpha2-adrenoreceptor-mediated responses. In radioligand binding assays using [125I]HEAT, rho-TIA displayed slightly greater potency at the alpha 1B than at the alpha 1A or alpha 1D subtypes. Moreover, although it did not affect the rate of association for [3H]prazosin binding to the alpha 1B-adrenoreceptor, the dissociation rate was increased, indicating non-competitive antagonism by rho-TIA. N-terminally truncated analogs of rho-TIA were less active than the full-length peptide, with a large decline in activity observed upon removal of the fourth residue of rho-TIA (Arg4). An alanine walk of rho-TIA confirmed the importance of Arg4 for activity and revealed a number of other residues clustered around Arg4 that contribute to the potency of rho-TIA. The unique allosteric antagonism of rho-TIA resulting from its interaction with receptor residues that constitute a binding site that is distinct from that of the classical competitive alpha1-adrenoreceptor antagonists may allow the development of inhibitors that are highly subtype selective.  相似文献   
106.
The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.  相似文献   
107.
How kinetochore proteins are organized to connect chromosomes to spindle microtubules, and whether any structural and organizational themes are common to kinetochores from distantly related organisms, are key unanswered questions. Here, we used affinity chromatography and mass spectrometry to generate a map of kinetochore protein interactions. The budding yeast CENP-C homologue Mif2p specifically copurified with histones H2A, H2B, and H4, and with the histone H3-like CENP-A homologue Cse4p, strongly suggesting that Cse4p replaces histone H3 in a specialized centromeric nucleosome. A novel four-protein Mtw1 complex, the Nnf1p subunit of which has homology to the vertebrate kinetochore protein CENP-H, also copurified with Mif2p and a variety of central kinetochore proteins. We show that Mif2 is a critical in vivo target of the Aurora kinase Ipl1p. Chromatin immunoprecipitation studies demonstrated the biological relevance of these associations. We propose that a molecular core consisting of CENP-A, -C, -H, and Ndc80/HEC has been conserved from yeast to humans to link centromeres to spindle microtubules.  相似文献   
108.
Transgenic rodent gene-mutation models provide relatively quick and statistically reliable assays for gene mutations in the DNA from any tissue. This report summarizes those issues that have been agreed upon at a previous IWGT meeting [Environ. Mol. Mutagen. 35 (2000) 253], and discusses in depth those issues for which no consensus was reached before. It was previously agreed that for regulatory applications, assays should be based upon neutral genes, be generally available in several laboratories, and be readily transferable. For phage-based assays, five to ten animals per group should be analyzed, assuming a spontaneous mutant frequency (MF) of approximately 3x10(-5) mutants/locus and 125,000-300,000 plaque or colony forming units (pfu or cfu) per tissue per animal. A full set of data should be generated for a vehicle control and two dose groups. Concurrent positive control animals are only necessary during validation, but positive control DNA must be included in each plating. Tissues should be processed and analyzed in a blocked design, where samples from negative control, positive control and each treatment group are processed together. The total number of pfus or cfus and the MF for each tissue and animal are reported. Statistical tests should consider the animal as the experimental unit. Nonparametric statistical tests are recommended. A positive result is a statistically significant dose-response and/or statistically significant increase in any dose group compared to concurrent negative controls using an appropriate statistical model. A negative result is a statistically non-significant change, with all mean MFs within two standard deviations of the control. During the current workshop, a general protocol was agreed in which animals are treated daily for 28 consecutive days and tissues sampled 3 days after the final treatment. This recommendation could be modified by reducing or increasing the number of treatments or the length of the treatment period, when scientifically justified. Normally male animals alone are sufficient and normally at least one rapidly proliferating and one slowly proliferating tissue should be sampled. Although, as agreed previously, sequencing data are not normally required, they might provide useful additional information in specific circumstances, mainly to identify and correct for clonal expansion and in some cases to determine a mechanism associated with a positive response.  相似文献   
109.
The cuticle of the nematode Caenorhabditis elegans is a collagenous extracellular matrix which forms the exoskeleton and defines the shape of the worm. We have characterized the C. elegans gene M142.2, and we show that this is a developmentally regulated gene important for cuticle structure. Transgenic worms expressing M142.2 promoter fused to green fluorescent protein showed that M142.2 is expressed in late embryos and L2d predauers, in the hypodermal cells which synthesize the cuticle. The same temporal pattern was seen by RT-PCR using RNA purified from specific developmental stages. A recombinant fragment of M142.2 was expressed in Escherichia coli and used to raise an antiserum. Immunohistochemistry using the antiserum localized M142.2 to the periphery of the alae of L1 and dauers, forming two longitudinal ribbons over the hypodermal cells. Loss-of-function of M142.2 by RNAi resulted in a novel phenotype: dumpy dauers which lacked alae. M142.2 therefore plays a major role in the assembly of the alae and the morphology of the dauer cuticle; because of its similarity to the other cut genes of the cuticle, we have named the gene cut-6.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号