首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1859篇
  免费   156篇
  2015篇
  2023年   11篇
  2022年   15篇
  2021年   38篇
  2020年   16篇
  2019年   26篇
  2018年   30篇
  2017年   34篇
  2016年   42篇
  2015年   85篇
  2014年   95篇
  2013年   117篇
  2012年   161篇
  2011年   146篇
  2010年   98篇
  2009年   108篇
  2008年   121篇
  2007年   133篇
  2006年   116篇
  2005年   104篇
  2004年   97篇
  2003年   92篇
  2002年   78篇
  2001年   23篇
  2000年   10篇
  1999年   12篇
  1998年   20篇
  1997年   6篇
  1996年   17篇
  1995年   13篇
  1994年   4篇
  1993年   16篇
  1992年   4篇
  1991年   5篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1978年   7篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   5篇
  1971年   4篇
  1968年   3篇
排序方式: 共有2015条查询结果,搜索用时 15 毫秒
81.
Chiroptical, rheological, and n.m.r.-relaxation evidence is presented, to identify interactions of two types between different polysaccharides: (1) mutual exclusion of incompatible molecules, with consequent increase in the effective concentration of both; and (2) energetically favourable association of structurally and sterically regular chain-segments. β-1,4-linked plant polysaccharides interact by association of unsubstituted backbone regions, either with like chians, or with sterically compatible, unlike molecules. Extracellular polysaccharides (xanthans) of Xanthomonas plant pathogens maintain their ordered native conformation in solution, and this accounts for their industrially valuable, rheological peculiarities. These materials bind strongly to the plant glycans. Random-coil bacterial gums show no such interactions, although dextran enhances autogelation of galactomannans by exclusion. Extracellular polysaccharides from Arthrobacter species also have ordered native conformations in solution, but do not share the specific interactions of xanthan. Native xanthan shows marked specificity in its interactions with plant glycans, indicating a possible biological role in host-pathogen recognition.  相似文献   
82.
Interactions between cognition and emotion are important for survival, often occurring in the absence of awareness. These interactions have been proposed to involve competition between cognition and emotion for attentional resources. Emotional stimuli have been reported to impair performance on cognitive tasks of low, but not high, load if stimuli are consciously perceived. This study explored whether this load-dependent interference effect occurred in response to subliminal emotional stimuli. Masked emotional (appetitive and aversive), but not neutral, stimuli interfered with performance accuracy but not response time on a cognitive task (n-back) at low (1-back), but not high (2-back) load. These results show that a load-dependent interference effect applies to masked emotional stimuli and that the effect generalises across stimulus categories with high motivational value. This supports models of selective attention that propose that cognition and emotion compete for attentional resources. More specifically, interference from masked emotional stimuli at low load suggests that attention is biased towards salient stimuli, while dissipation of interference under high load involves top-down regulation of attention. Our data also indicate that top-down goal-directed regulation of attention occurs in the absence of awareness and does not require metacognitive monitoring or evaluation of bias over behaviour, i.e., some degree of self-regulation occurs at a non-conscious level.  相似文献   
83.
BackgroundTaller adult height is associated with lower risks of ischemic heart disease in mendelian randomization (MR) studies, but little is known about the causal relevance of height for different subtypes of ischemic stroke. The present study examined the causal relevance of height for different subtypes of ischemic stroke.Methods and findingsHeight-associated genetic variants (up to 2,337) from previous genome-wide association studies (GWASs) were used to construct genetic instruments in different ancestral populations. Two-sample MR approaches were used to examine the associations of genetically determined height with ischemic stroke and its subtypes (cardioembolic stroke, large-artery stroke, and small-vessel stroke) in multiple ancestries (the MEGASTROKE consortium, which included genome-wide studies of stroke and stroke subtypes: 60,341 ischemic stroke cases) supported by additional cases in individuals of white British ancestry (UK Biobank [UKB]: 4,055 cases) and Chinese ancestry (China Kadoorie Biobank [CKB]: 10,297 cases). The associations of genetically determined height with established cardiovascular and other risk factors were examined in 336,750 participants from UKB and 58,277 participants from CKB. In MEGASTROKE, genetically determined height was associated with a 4% lower risk (odds ratio [OR] 0.96; 95% confidence interval [CI] 0.94, 0.99; p = 0.007) of ischemic stroke per 1 standard deviation (SD) taller height, but this masked a much stronger positive association of height with cardioembolic stroke (13% higher risk, OR 1.13 [95% CI 1.07, 1.19], p < 0.001) and stronger inverse associations with large-artery stroke (11% lower risk, OR 0.89 [0.84, 0.95], p < 0.001) and small-vessel stroke (13% lower risk, OR 0.87 [0.83, 0.92], p < 0.001). The findings in both UKB and CKB were directionally concordant with those observed in MEGASTROKE, but did not reach statistical significance: For presumed cardioembolic stroke, the ORs were 1.08 (95% CI 0.86, 1.35; p = 0.53) in UKB and 1.20 (0.77, 1.85; p = 0.43) in CKB; for other subtypes of ischemic stroke in UKB, the OR was 0.97 (95% CI 0.90, 1.05; p = 0.49); and for other nonlacunar stroke and lacunar stroke in CKB, the ORs were 0.89 (0.80, 1.00; p = 0.06) and 0.99 (0.88, 1.12; p = 0.85), respectively. In addition, genetically determined height was also positively associated with atrial fibrillation (available only in UKB), and with lean body mass and lung function, and inversely associated with low-density lipoprotein (LDL) cholesterol in both British and Chinese ancestries. Limitations of this study include potential bias from assortative mating or pleiotropic effects of genetic variants and incomplete generalizability of genetic instruments to different populations.ConclusionsThe findings provide support for a causal association of taller adult height with higher risk of cardioembolic stroke and lower risk of other ischemic stroke subtypes in diverse ancestries. Further research is needed to understand the shared biological and physical pathways underlying the associations between height and stroke risks, which could identify potential targets for treatments to prevent stroke.

In a Mendelian randomization study, Andrew B. Linden and colleagues study the relationship between height and risk of stroke subtypes among individuals from the MEGASTROKE consortium, China Kadoorie Biobank, and UK Biobank.  相似文献   
84.
85.
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.  相似文献   
86.
Extracellular matrix: from atomic resolution to ultrastructure   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) is a highly organized multimolecular structure, essential for life in higher organisms. Although substantial high-resolution structural information is available for relatively small fragments of ECM components, the inherent difficulty in preparing and analyzing samples of large, fibrous polymers impedes structural efforts. Here, we review recent advances in understanding the structure of three important ECM components: collagen, fibrillin and fibronectin. Emphasis is placed on the key role of intermolecular interactions in assembling larger, microm scale, structures.  相似文献   
87.
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl fluxes. Neither Na+ nor Cl appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km 1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3 does not affect boron extrusion by Bor1p, indicating that HCO3 does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner (10). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain. boron; SLC4; YNL275w  相似文献   
88.
Nup53 is required for nuclear envelope and nuclear pore complex assembly   总被引:1,自引:0,他引:1  
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53-Nup155 complex plays a critical role in the processes of NPC and NE assembly.  相似文献   
89.
Statins, the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, are effective serum cholesterol-lowering agents in clinical practice, and they may also have anti-inflammatory properties. Asthma is characterized by chronic eosinophilic inflammation in the airways, which is thought to be regulated by the activity of T lymphocytes. We therefore examined the anti-inflammatory activity of simvastatin in a murine model of allergic asthma. In mice previously sensitized to OVA, simvastatin treatment, either orally or i.p., reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid in response to inhaled OVA challenge. Simvastatin therapy i.p. was also associated with a reduction in IL-4 and IL-5 levels in bronchoalveolar lavage fluid and, at higher doses, a histological reduction in inflammatory infiltrates in the lungs. OVA-induced IL-4, IL-5, IL-6, and IFN-gamma secretion was reduced in thoracic lymph node cultures from simvastatin-treated mice. Simvastatin treatment did not alter serum total IgE or OVA-specific IgG1 and IgG2a levels. These data demonstrate the therapeutic potential of statin-sensitive pathways in allergic airways disease.  相似文献   
90.
The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa secretes a viscous extracellular polysaccharide, called alginate, as a virulence factor during chronic infection of patients with cystic fibrosis. In the present study, it was demonstrated that the outer membrane protein AlgE is required for the production of alginate in P. aeruginosa. An isogenic marker-free algE deletion mutant was constructed. This strain was incapable of producing alginate but did secrete alginate degradation products, indicating that polymerization occurs but that the alginate chain is subsequently degraded during transit through the periplasm. Alginate production was restored by introducing the algE gene. The membrane topology of the outer membrane protein AlgE was assessed by site-specific insertions of FLAG epitopes into predicted extracellular loop regions.Pseudomonas aeruginosa is an ubiquitous opportunistic human pathogen responsible for chronic infections of the lungs of patients with cystic fibrosis (CF), in whom it is the leading cause of mortality and morbidity (9). The establishment of a chronic infection in the lungs of patients with CF coincides with the switch of P. aeruginosa to a stable mucoid variant, producing copious amounts of the exopolysaccharide alginate; this is typically a poor prognostic indicator for these patients (24, 31). Alginate is a linear unbranched exopolysaccharide consisting of 1,4-linked monomers of β-d-mannuronic acid and its C-5 epimer, α-l-guluronic acid, which is known to be produced by only two bacterial genera, Pseudomonas and Azotobacter (34). The switch to a mucoid phenotype coincides with the appearance of a 54-kDa protein in the outer membrane; this protein has been identified and has been designated AlgE (13, 31).The genes encoding the alginate biosynthesis machinery are located within a 12-gene operon (algD-alg8-alg44-algK-algE-algG-algX-algL-algI-algJ-algF-algA). AlgA and AlgD, along with AlgC (not encoded in the operon), are involved in precursor synthesis (34). Alg8 is the catalytic subunit of the alginate polymerase located at the inner membrane (35). AlgG is a C-5 mannuronan epimerase (19). AlgK contains four putative Sel1-like repeats, similar to the tetratricopeptide repeat motif often found in adaptor proteins involved in the assembly of multiprotein complexes (3, 10). AlgX shows little homology to any known protein, and its role is unclear (14). Knockout mutants of AlgK, AlgG, and AlgX have nonmucoid phenotypes, although they produce short alginate fragments, due to the activity of the alginate lyase (AlgL), which degrades the nascent alginate (1, 14, 19-21, 36). AlgF, AlgI, and AlgJ are involved in acetylation of alginate, but they are not ultimately required for its production (12). The membrane-anchored protein, Alg44, is required for polymerization and has a PilZ domain for the binding of c-di-GMP, a secondary messenger essential for alginate production (16, 25, 33). The periplasmic C terminus of Alg44 shares homology with the membrane fusion proteins involved in the bridging of the periplasm in multidrug efflux pumps (11, 43). The periplasmic alginate lyase, AlgL, appears to be required for the translocation of intact alginate across the periplasm (1, 26). AlgE is an outer membrane, anion-selective channel protein through which alginate is presumably secreted (30). A protein complex or scaffold through which the alginate chain can pass and be modified and which spans the periplasm bridging the polymerase located (Alg8) at the outer membrane pore (AlgE) has been proposed (21). Indeed, it has been demonstrated that both the inner and the outer membranes are required for the in vitro polymerization of alginate (35).The requirement of AlgE for the biosynthesis of alginate in P. aeruginosa was first observed by complementation of an alginate-negative mutant derived by chemical mutagenesis with a DNA fragment containing algE (8) Secondary structure predictions suggested that AlgE forms an 18-stranded β barrel with extended extracellular loops. Several of these loops show high densities of charged amino acids, suggesting a functional role in the translocation of the anionic alginate polymer (29, 30). Preliminary analysis of AlgE crystals has been reported (48).In this study, the role of AlgE in alginate biosynthesis was investigated and the membrane topology of AlgE was assessed by site-directed insertion mutagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号