首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   40篇
  2021年   11篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   14篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   12篇
  2007年   4篇
  2006年   6篇
  2005年   12篇
  2003年   5篇
  2002年   9篇
  2001年   17篇
  2000年   7篇
  1999年   7篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   11篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   9篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1971年   6篇
  1969年   7篇
  1967年   3篇
排序方式: 共有343条查询结果,搜索用时 312 毫秒
61.
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.  相似文献   
62.
63.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   
64.
65.
Because CO2 uptake by cacti can be limited by low levels of photosynthetically active radiation (PAR) and because plant form affects PAR interception, various cactus forms were studied using a computer model, field measurements, and laboratory phototropic studies. Model predictions indicated that CO2 uptake by individual stems at an equinox was greatest when the stems were vertical, but at the summer and the winter solstice CO2 uptake was greatest for stems tilted 30° away from the equator. Stem tilting depended on form and taxonomic group; four barrel cacti in Ferocactus and in Copiapoa and four cylindropuntias in Opuntia tilted toward a horizontal light beam by an average of 18°, 48°, and 52°, respectively, after growth periods of 1 to 4 yr. In contrast, three columnar species showed no significant phototropic response, perhaps because structural stability requires their massive stems to be erect. Field plants of the dense, multiple-stemmed shrub Opuntia echinocarpa had stems which tended to radiate outward from the plant base, and, although this would not influence the total PAR intercepted, it would result in a more uniform PAR distribution and hence higher CO2 uptake. For O. echinocarpa and the even denser, mound-forming Echinocereus engelmannii, PAR and chlorophyll decreased approximately exponentially with depth into the canopy. The canopies of O. echinocarpa and other cylindropuntias did not extend to the ground; in certain species, such truncation apparently resulted from a combination of very low PAR levels just below the lower canopy edge and the light-dependent growth responses of individual stems. In addition, although the canopy surfaces of O. echinocarpa and O. acanthocarpa tilted toward the equator by about 30°, the canopies of other cylindropuntias tilted less or not at all; the computer model predicted that a 30° tilt would decrease interstem shading, increase daily PAR, and increase nocturnal CO2 uptake by as much as 54, 26, and 24%, respectively. Not only can the shape of cacti be affected by PAR, but also shape influences PAR interception and hence CO2 uptake.  相似文献   
66.
As an alternative to primary fetal tissue, immortalized central nervous system (CNS)-derived cell lines are useful for in vitro CNS model systems and for gene manipulation with potential clinical use in neural transplantation. However, obtaining immortalized cells with a desired phenotype is unpredictable, because the molecular mechanisms of growth and differentiation of CNS cells are poorly understood. The SV40 large T antigen is commonly used to immortalize mammalian cells, but it interferes with multiple cell-cycle components, including p53, p300, and retinoblastoma protein, and usually produces cells with undifferentiated phenotypes. In order to increase the phenotypic repertoire of immortalized CNS cells and to address the molecular mechanisms underlying immortalization and differentiation, we constructed an expression vector containing a truncated SV40 large T gene that encodes only the amino-terminal 155 amino acids (T155), which lacks the p53-binding domain. Constructs were first transfected into a p53-temperature-sensitive cell line, T64-7B. Colonies expressing T155 proliferated at the growth-restrictive temperature. T155 was then transfected into primary cultures from embryonic day-14 rat mesencephalon. Two clonal cell lines were derived, AF-5 and AC-10, which co-expressed T155 and mature neuronal and astrocytic markers. Thus, the amino-terminal portion of SV40 large T is sufficient to: (1) overcome p53-mediated growth arrest despite the absence of a p53-binding region, and (2) immortalize primary CNS cells expressing mature markers while actively dividing. T155 and T155-transfectants may be useful for further studies of cell-cycle mechanisms and phenotyic expression in CNS cells or for further gene manipulation to produce cells with specific properties.  相似文献   
67.
C J Marcus  W L Byrne  A M Geller 《Life sciences》1974,15(10):1765-1780
Treatment of purified fructose 1,6-diphosphatase from bovine liver (which is maximally active at neutral pH) with pyridoxal 5'-phosphate produces changes in the spectral, catalytic, and allosteric properties of the enzyme. After modification the Michaelis constants for fructose-1,6-diphosphate and Mg2+ are increased, and inhibition by AMP is decreased. Substrate inhibition is decreased, but not abolished; the curve is merely shifted toward higher substrate concentration. Fructose-1, 6-diphosphate protects against the increases in the Km for fructose-1, 6-diphosphate and the Km for Mg2+, and against the changes in substrate inhibition, but not against the changes in AMP inhibition. AMP protects against the changes in AMP inhibition and the increase in the Km for magnesium, but does not prevent the changes in substrate inhibition or the increase in the Km for fructose-1, 6-diphosphate. The pH curves in the modified enzyme are altered at high, but not at low, substrate concentration.  相似文献   
68.
We have investigated the impact of cellular environment on the neurite outgrowth promoting properties of the alternatively spliced fibronectin type-III region (fnA-D) of tenascin-C. FnA-D promoted neurite outgrowth in vitro when bound to the surface of BHK cells or cerebral cortical astrocytes, but the absolute increase was greater on astrocytes. In addition, different neurite outgrowth promoting sites were revealed within fnA-D bound to the two cellular substrates. FnA-D also promoted neurite outgrowth as a soluble ligand; however, the actions of soluble fnA-D were not affected by cell type. Therefore, we hypothesized that different mechanisms of cellular binding can alter the growth promoting actions of bound fnA-D. We found that fnA-D utilizes two distinct sequences to bind to the BHK cell surface as opposed to the BHK extracellular matrix. In contrast, only one of these sequences is utilized to bind to the astrocyte matrix as opposed to the astrocyte surface. Furthermore, Scatchard analysis indicated two types of receptors for fnA-D on BHK cells and only one type on astrocytes. These results suggest that active sites for neurite outgrowth within fnA-D are differentially revealed depending on cell-specific fnA-D binding sites. Therefore, the function of tenascin-C and its various domains must be considered in terms of cellular context.  相似文献   
69.
Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin‐regulated water reabsorption via aquaporin‐2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2‐mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin–cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP‐induced increase in ser256‐AQP2 and osmotic water permeability. A similar effect on ser256‐AQP2 was found in V1aR ?/? mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan–V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256‐AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium‐inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号